

Planning and Zoning Commission Agenda Tuesday, September 3, 2024 at 7:00 p.m.

Location: 56 SW Malone St Fairburn, GA 30213

- A. Call to Order
- B. Determination of a Quorum
- C. Pledge of Allegiance
- D. Approval of the Meeting Agenda
- E. Approval of the Meeting Minutes
 - 1. Approval of the August 2024- Regular Meeting Minutes
- F. Public Comments
- G. Old Business

1. Text Amendment

Applicant: Safeguard Landfill Management c/o Henry Bailey-Text Amendment- Section 80-220(b)(11). The applicant requests to delete and replace Section 80-220(b)(11)

2. Use Permit

Applicant: Safeguard Landfill Management c/o Henry Bailey

Request the expansion of the C&D Landfill

Parcel ID: 07-260001540892, 7700 Roosevelt Hwy, Parcel ID: 07-260001350359, Bishop Rd

Parcel ID: 07-260001540736, Bishop Rd, Parcel ID: 07-260001540744, Bishop Rd, Parcel ID: 07-260001540751, Bishop Rd Parcel ID: 07-290001551516, 6905 B Roosevelt Hwy, Parcel ID: 07-260001540876, Bishop Rd, Parcel ID: 07-290001551557,

Roosevelt Hwy, Parcel ID: 07-290001551540, Roosevelt Hwy, Parcel ID: 07-290001551185, 7700 Bishop Rd

H. Public Hearings

1. Variance - Big Dan's Car Wash LLC

Property Location: 7925 Senoia Road (Parcel ID # 09F070300270350)

Requests: To reduce the Distance Requirement of Signage to Right-of-Way from 15' to 12'

and to reduce the Distance Requirement of Signage to any other Signage, Structure, or Building from 40' to 18' (Chapter 80 Zoning, Article XII Sign Regulations, Section 431 Regulated signs, b- Non-residential allowable signs, 1-Freestanding and monument signs, f

I. New Business

1. Rezoning and Variance – Meadow Glen Village

Applicant: Portman Residential, LLC

Request to rezone the subject parcels from PD (Commercial) to PD (Commercial and Multifamily).

 $Location: Highway\ 74/Senoia\ Road\ and\ Meadow\ Glen\ Parkway.,\ Parcel\ No.\ 09F020100121014\ and\ Parcel\ \#09F070000271062$

Concurrent Variance- to reduce the parking requirements, Sec. 80-337.

2. Text Amendment -Future Land Use Amendment

Request to review regulations regarding amendments to the Future Land Use Map

3. Text Amendment -Sign Regulations

Request to review new regulations for the nonconforming signs

Other Business

K. Adjournment

Planning and Zoning Commission Meeting Minutes City Hall: 56 Malone Street, Fairburn, GA 30213 Tuesday, July 6, 2024 7:00 p.m.

Jason Jones, Vice Chair Michelle James Lina Parker Elizabeth Echols Tony Smith

Planning Director: Denise Brookins

Planner: Chancellor Felton City Attorney: Valerie Ross

- **A.** Call to Order: The meeting was called to order at 7:00 pm by Vice Chairman Jones.
- **B. Determination of a Quorum:** A quorum was determined, and the meeting proceeded.
- C. Pledge of Allegiance
- D. Approval of the Meeting Agenda:
 - 1. Commissioner James made a motion to approve the agenda. Commissioner Echols seconded. **THE MOTION CARRIED.**
- E. Approval of the Meeting Minutes:
 - 1. Commissioner Echols made a motion to approve the June 4, 2024, minutes. Commissioner Smith seconded.

THE MOTION CARRIED.

- F. Public Comments: None.G. Old Business: None.
- H. New Business:
 - 1. Future Land Use Amendment Text Amendment Discussion

Request to discuss the text amendment.

- a. Vice Chairman Jones introduced the case. Denise Brookins presented the case on behalf of Staff. Vice Chairman Jones opened the floor for the Commission to ask Staff questions.
- b. Vice Chairman Jones wanted to clarify that this Future Land Use Amendment Text Amendment was to ensure that there was a formal process for a future land use amendment.
- c. Ms. Brookins said yes. As it stands the City does not have a future land use amendment process, which could lead to the City missing out on good development opportunities.
- d. Commissioner James inquired about the Comprehensive Plan Update. Ms. Brookins noted that the agenda item being discussed is for a singular text amendment to the Zoning Code. The Comprehensive Plan Update is different from that.
- e. Vice Chairman Jones closed the floor to ask Staff guestions.

2. Poplar Commons Rezoning

Applicant: Freedom Land Holdings LLC

Address: 0 Milo Fisher Street [Parcel ID: 09F100900520167], Parcel ID: 09F100900520332, Parcel

ID: 09F100900520340, and Parcel ID: 09F100900520357

Request to review the rezoning.

a. Vice Chairman Jones introduced the case. Denise Brookins presented the case on behalf of Staff. Staff made a recommendation for approval with conditions. Vice Chairman Jones opened the floor for the Commission to ask Staff guestions.

- b. Commissioner Smith asked how far the development is away from Landmark. Ms. Brookins said that the development is really close.
- c. Vice Chairman Jones inquired why Staff was partially in support of the request. Ms. Brookins answered that due to one of the parcels having a Rural Residential Future Land Use Designation, Staff could not support the full request. The development has a higher density than what the future land use designation will allow.
- d. Commissioner James asked what the density is for Rural Residential. Ms. Brookins said about one home per acre.
- e. Vice Chairman Jones asked if a runoff study had been done. Ms. Brookins said that a runoff study is done after approval and any findings that would need mitigation from said study will be the responsibility of the applicant.
- f. Vice Chairman Jones asked if access is only off of Milo Fisher and not East Campbellton Road. Ms. Brookins said yes.
- g. Commissioner James inquired about the square footage of an average home in the development. Ms. Brookins said that the minimum square foot in the proposed zoning district R-CT is 1,200 square feet.
- h. Commissioner Parker asked what the price point is for the homes. Ms. Brookins said that pricing is not a consideration during this review process and the applicant may be able to answer.
- i. Vice Chairman Jones closed the floor to ask Staff questions and opened the floor to ask the applicant questions and address the Commission.
- j. The applicant presented to the Commission.
- k. Commissioner Smith asked how far the development is away from Landmark. The applicant said that the development is across the street from Landmark.
- Commissioner Smith asked if there was a town hall meeting with Landmark leadership.
 The applicant said that they have been involved since inception. Commissioner Smith if
 they are okay with the development. The applicant said that they have heard no
 objections.
- m. Commissioner James inquired about guest parking. The applicant said that there are two-car garages, driveways, and overflow guest parking spaces with one parking space per two households.
- n. Commissioner James asked what the price point is for the homes. The applicant said upper \$300,000s and lower \$400,000s.
- o. Commissioner Echols asked if these homes would be specifically for Landmark parents and personnel. The applicant said no.

- p. Commissioner Smith asked how big the homes would be. The applicant said more than 2,400 square feet.
- q. Commissioner Parker stated that a traffic study should be required.
- r. Commissioner James asked if there would be a homeowners' association. The applicant said yes.
- s. Vice Chairman Jones closed the floor to ask the applicant questions and opened the floor to public comments.
- t. Mr. Brooks made a public comment about the traffic and density increasing.
- u. Mr. Alderman made a public comment about the traffic, density, and property taxes increasing.
- v. Ms. Scharko made a public comment about the septic system being challenged and traffic increasing.
- w. Mr. Pallend made a public comment that he does not think that this type of development is appropriate for the neighborhood.
- x. Mr. Ballard made a public comment that the development changes the character of the neighborhood and that the developer is not fully transparent and reliable.
- y. Mr. Scharko made a public comment about the existing infrastructure issues that will be exacerbated by this type of development.
- z. The applicant stated that they tried their best to address concerns. They dropped their density and incorporated the water features on the site. A traffic study will be done if required.
- aa. Mr. Brooks made a public comment to always consider the environmental impacts of proposed developments.
- bb. Ms. Mayfield made a public comment that Landmark has personnel and parents that would move into these homes and have a hard time looking for homes near the school. She stated that crime is not an issue and the original use of the Landmark-owned parcel was to be institutional not rural.
- cc. Vice Chairman Jones closed the floor to public comments.
- dd. Commissioner James noted that this decision is very complex and is a difficult one to make. She notes that there is a delicate balance between considering senior residents on fixed incomes who can't afford property tax increases with building more homes that will woo more commercial and service providers to the City that will enhance the quality of life of residents.

Commissioner James made a motion to APPROVE. Commissioner Echols seconded.

THE MOTION CARRIED.

3. Poplar Commons Concurrent Variance

Applicant: Freedom Land Holdings LLC

Address: 0 Milo Fisher Street [Parcel ID: 09F100900520167], Parcel ID: 09F100900520332, Parcel ID: 09F100900520340, and Parcel ID: 09F100900520357

Request to review the concurrent variance.

Commissioner James motioned to APPROVE. Commissioner Echols seconded.

THE MOTION CARRIED.

I. Adjournment:

1. Commissioner Smith motioned to adjourn the public meeting at 8:21 pm. Commissioner Echols seconded.

THE MOTION CARRIED.

CITY OF FAIRBURN

PLANNING & ZONING COMMISSION

AGENDA ITEM

To: Planning and Zoning Commission

From: Chancellor Felton, Planner

Date: September 3, 2024

Agenda Item: Big Dan's Car Wash Sign – 7925 Senoia Road [Parcel ID: 09F070300270350] – Request to reduce the Distance Requirement of Signage to Right-of-Way from 15 feet to 12 feet and to reduce the Distance Requirement of Signage to any other Signage, Structure, or Building from 40 feet to 18 feet.

Agent/Applicant/Petitioner Information

Applicant: Big Dan's Car Wash LLC

Property Owner: Jarrett Shadday

Background

The site is located at 7925 Senoia Road on the southwest corner of the intersection of Senoia Road (Highway 74) and Peachtree Landing Circle. The site is currently zoned C-2 (General Commercial). The site is approximately 1.43 acres.

Discussion

The applicant is proposing to relocate their existing sign to another location on their property. This is due to the road widening project by the Georgia Department of Transportation (GDOT). GDOT has taken some property from the applicant for said project, which has induced the need to relocate the sign as the sign is currently located on the property that GDOT has acquired.

The Zoning Code requires that freestanding and monument signs "shall not be located within 15 feet of a street right-of-way or within 40 feet of any other sign, structure, or building except temporary signs."

The applicant is proposing to reduce the Distance Requirement of Signage to Right-of-Way from 15 feet to 12 feet and to reduce the Distance Requirement of Signage to any other Signage, Structure, or Building from 40 feet to 18 feet.

Authority

As authorized in Section 80-254, the Planning and Zoning Commission may authorize variances from any zoning ordinance provision that is not being handled as a minor, administrative minor, or concurrent variance only upon making the following findings:

Variance Considerations

Section 80-251 – Variances may be considered in all districts. Primary variances and concurrent variances shall only be granted upon showing that:

- 1. Relief, if granted, would be in harmony with, or, could be made to be in harmony with, the general purpose and intent of this chapter.
 - <u>This condition has been satisfied</u>. The purpose and intent of the Sign Regulations are to encourage the effective use of signs as a means of communication in the city. Therefore, if relief is granted, the proposed relocation would be in harmony with the general purpose and intent of the Sign Regulations.
- 2. The application of the particular provision of this chapter to a particular piece of property, due to extraordinary and exceptional conditions pertaining to that property because of its lot size, shape, or topography, would create an unnecessary hardship for the owner while causing no detriment to the public.
 - <u>This condition has been satisfied</u>. This property does have extraordinary and exceptional conditions, because of its size and shape that would create an unnecessary hardship for the owner while causing no detriment to the public.
- 3. Conditions resulting from existing foliage or structures bring about a hardship whereby a sign meeting minimum letter size, square footage and height requirements cannot be read from an adjoining public road.

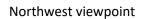
Not applicable.

Staff Recommendations

Staff recommends APPROVAL with the following condition:

1. Any significant modifications as determined by Staff to the proposed signage plan in regard to the 15-foot Distance Requirement of Signage to Right-of-Way reduction and/or the 40-foot Distance Requirement of Signage to any other Signage, Structure, or Building reduction would necessitate a further review by the Planning and Zoning Commission.

Attachments:


- Site Pictures
- Application
- Letter of Intent
- Current Survey
- Proposed Signage Plan
- Deed with Legal Description

SITE PICTURES

Southwest Viewpoint

Northeast viewpoint

CITY OF FAIRBURN PLANNING AND ZONING COMMISSION AGENDA ITEM

To: Planning and Zoning Commission

From: Denise Brookins

Date: September 3, 2024 Planning and Zoning Commission

Agenda Item: Rezoning from PD to PD (Commercial and Multifamily). Meadow Glen Village - Highway

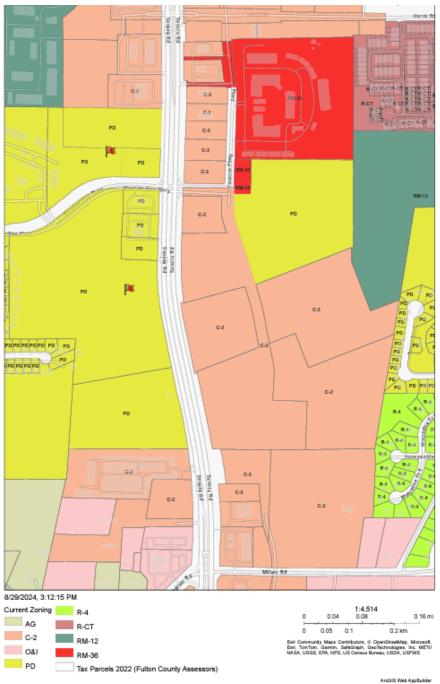
74/Senoia Road and Meadow Glen Parkway. Concurrent Variance- The applicant submitted

a request for a concurrent variance to reduce the parking requirements.

APPLICANT/PETITIONER INFOR	MATION
Property Owner	Petitioner
White Brookwood LLC	Portman Residential, LLC
PROPERTY INFORMATION	
Address, Parcel Number	Highway 74/Senoia Road and Meadow Glen Parkway., Parcel No. 09F020100121014 (a portion of) and Parcel #09F070000271062 (collectively, the "Application")
Frontage:	Highway 74/Senoia Road and on the south side of Meadow Glen Parkway.
Area of Property:	23-\+ acres
Existing Zoning and Use:	Planned Development (Commercial Tract) and Undeveloped
Overlay District:	Highway 74 Overlay District
Prior Zoning Cases/History:	Rezoning Approved February 23, 1998, 98-07, Senoia & Bohannon Rd
2035 Comprehensive Future Land Use Map Designation:	Highway Mixed Use - The Commercial Character Area is south of Downtown Fairburn and south of I-85, along Fairburn Industrial Boulevard/Senoia Road. Businesses in the Commercial Character Area rely on and serve a wider population than the commercial businesses in the Town Center Character Area, including the entire city, surrounding counties, and pass-through traffic.
Proposed Zoning:	Planned Development-PD

INTENT

Rezoning of 23 acres, from PD to PD. The applicant is requesting approval to amend and rezone a portion of the Master Planned Development (PD) zoning district of Meadow Glen, in lieu of the commercial development proposed on the property in the 1998 ordinance, the current proposal is to develop a mixed-use community on this portion of the property including a maximum of 12,000 sf retail, office, institutional and personal service use, and 364 multifamily units.


EXISTING LAND USE AND ZONING OF ABUTTING PROPERTIES

North: C-2 (General Commercial) and PD (Planned Development) - Commercial

East: PD (Planned Development) - Commercial

South: PD (Planned Development)- Single Family and MultifamilyWest: PD (Planned Development)- Single Family and Multifamily

Zoning Map:

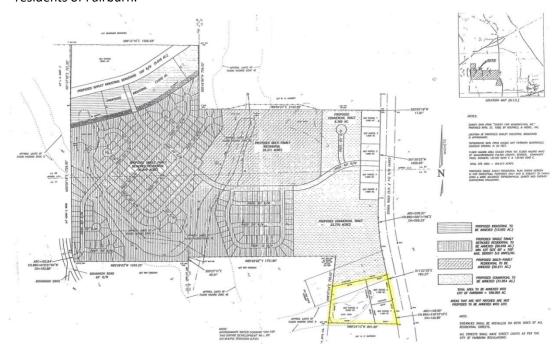
Future Land Use Map:

BACKGROUND

The subject parcel is located in the area designated as "commercial" in the original master plan for the Meadow Glen community. The development was annexed into the City of Fairburn in 1998, subsequently zoned as Planned Development for single family units, multifamily, commercial, and industrial areas.

The *current regulations* permit the following:

Residential:


- Development of 208 multifamily units on 26.211 acres. This represents a density of eight (8) units per acre
- Development of 284 single family units on 86.948 acres. This represents a density of 3.27 units per acre.

Commercial Areas:

 Major Group 55 (auto dealers and gasoline service stations) and Major Group 75 (auto repair and related services) as well as all of the conditional uses under the C-2 District regulations will be prohibited in the areas designated as "commercial". Convenience stores (SIC Code 5411) which include gasoline sales will be permitted in the areas designated as "commercial".

Industrial

- The area designated as "industrial" shall be limited to uses permitted in the M-1, Light industrial district.
- Developer shall covenant to preserve a recreation easement for the purpose of future trail
 construction by the Homeowners Association or the City of some 1,300 linear feet within the 50-foot
 buffer identified on the area designated as industrial land. All trail systems shall be available to all
 residents of Fairburn.

Public Participation:

The applicant held two community meetings on June 25, 2024, and July 23, 2024, and each meeting had only one attendee.

STAFF COMMENTS

A. Fire Department:

No Comments

B. Utility Department:

Water and sewer capacity is available as shown in the capacity letter that was sent to Chris Harrell on 7/8/2024.

C. Traffic Review:

- 1. The Traffic Impact Study failed to consider the City of Fairburn's requirements regarding turn lanes. The study should be revised to capture these requirements. In instances where there is conflict between the GDOT requirements and City of Fairburn requirements, the most restrictive or that imposing the highest standards shall govern.
- 2. Nothing in these regulations shall impose any obligation on the city to obtain or assist in obtaining permits, approvals, and/or clearances from other local, state or federal agencies having jurisdiction over elements of a project. It is solely the developer's responsibility to obtain all such required permits, approvals, and/or clearances. The developer shall furnish the city with copies of all such permits, approvals and/or clearances before authorization to proceed with development is requested. (Sec. 71-6) Approval from the Georgia Department of Transportation will be required to be received prior to Site development Plan approval. A copy of the approved permit and approved plans are required to verify alignment with the proposed site development plans.
- 3. Turning lanes may be required by the city to meet projected traffic demand and/or safe operations, as determined by the city engineer. When provided, turning lanes shall meet the following criteria:
 - Provide not less than 150 feet of storage length for arterial roadways.
 - Provide not less than 100 feet of storage length for collector roadways.
 - Provide taper lengths of not less than 100 feet. Longer storage and taper lengths may be required when traffic projections indicate they are justified. [Sec. 71-38 (4)]
- Except as indicated, acceleration and deceleration lanes shall be provided for new street and driveway connections to existing streets. The lanes will not be required if any of the following conditions are met:
 - The driveway is for a one-family or two-family residence;
 - Total traffic on the existing roadway is less than 2,000 vehicles per day including traffic projected as
 - a result of the proposed development (count of existing traffic must have been made within one year

- of the development plan submittal date);
- The driveway is for a small business with ingress/egress of less than 100 vehicles per day; or
- Construction cost of the lanes exceeds 25 percent of the estimated development cost. [Sec. 71-40]
- Traffic control devices consisting of street name signs, traffic control signs, traffic markings and traffic signals shall be provided by the developer as appropriate to serve each development.
 The Traffic Impact Study should be updated to analyze the intersection of Meadow Glenn Parkway and SR 47/Senoia to determine if a permissive or protected left-turn signal is required to be installed as a result of the proposed development.

D. Zoning Review:

A. Does the proposal permit a use that is suitable in view of the use and development of adjacent and nearby property?

The request to rezone the subject property from commercial to mixed use with a substantial residential component is suitable based on the existing uses of the adjacent and nearby properties.

B. Does the proposal adversely affect the existing use or usability of adjacent or nearby property?

The proposed rezoning request with sufficient buffers, traffic control and design standards should not adversely affect existing uses or the usability of nearby properties.

C. Does the property have reasonable economic use as currently zoned?

The property appears to have reasonable economic use as currently zoned.

D. Will the proposal result in a use that could cause excessive or burdensome use of existing streets, transportation facilities, utilities, or schools?

The proposed rezoning and development would increase traffic on existing streets, given the requested density, a traffic impact report was provided, and city staff has requested conditions. An increase in impacts on public facilities would be anticipated in the form of traffic, utility demand, and stormwater runoff; however, these impacts would be mitigated with appropriate conditions, site development requirements, transportation improvements and planning. An increased impact is anticipated on school enrollment.

E. Is the proposal in conformity with the policies and intent of the land use plan?

The subject property designation in the Comprehensive Plan is Highway Mixed Use. There are two Commercial Character areas. One is simply entitled Commercial and is a more general designation. The other is Neighborhood Commercial. The Comprehensive plan states that it is important to minimize the impact of commercial areas on surrounding uses by considering their additional vehicular traffic generation, the potential of their aesthetics on the site and surrounding properties and ensuring compatibility. The Commercial Character Areas are adjacent to Residential and Office Industrial Character Areas, providing goods and services to workers, residents, and commuters within a reasonable distance of where they live, work, and travel.

Appropriate zoning districts in the Commercial Character Area include C-1, C-2, O & I, R-CT, RM-12, RM-36, and PD.

The following are the development strategies for the area:

- Vibrant commercial corridors that provide a comprehensive array of goods and services to Fairburn residents as well as Coweta and Fayette County residents
- Smaller scale, walkable retail centers with a variety of stores and shops
- Developments that are accessible and safe for pedestrians and cyclists, as well as automobiles
- To promote a variety of housing types in the area.
- Limit multi-family densities to no more than 36 units an acre
- Building height should be limited to four (4) stories.

 Multi-family and townhome should be used as a transition from the intense commercial use to the residential uses

Appropriate land uses in the Comprehensive Plan for the subject parcels:

- Mixed-Use
- Retail Sales of Goods (Clothing, Shoes,
- Accessories, Gifts, Sporting Goods, etc.)
- Grocery Stores
- Restaurants/Cafés
- Drug Stores/Pharmacies
- Dry Cleaners

- Medical and professional offices/other service providers
- Theaters
- Multi-family housing
- Townhomes
- Lodging
- Transit-oriented development

The proposed development use does align with the Comprehensive Plan.

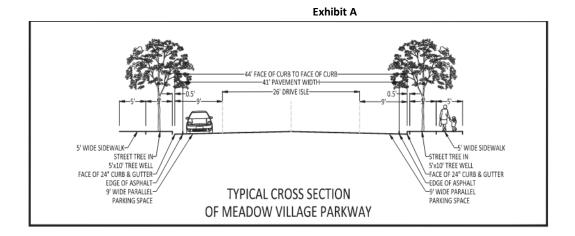
F. Are there existing or changing conditions that affect the use and development of the property which support either approval or denial of the proposal?

Most of the adjacent properties in the master planned area are residential developments. As higher density residential demand has increased along Highway 74, there might be limited areas for commercial developments outside of quick serve restaurants or automotive uses in the city limits.

G. Does the proposal permit a use that can be considered environmentally adverse to the natural resources, environment, and citizens of Fairburn?

To the best of staff's knowledge, the proposal would not permit a use which could be considered environmentally adverse to the natural resources, environment, or citizens of Fairburn. The developer will be required to adhere to the City's stream buffer ordinance and best management practices (BMP).

Staff Report:


It is the opinion of staff that the rezoning request is in conformity with the Future Development Map, which designates the site as Highway Mixed Use. Based on the staff's evaluation of the request, the Department of Planning and Zoning recommends **APROVAL** of the rezoning request with the following conditions:

General Requirements:

- 1. Prior to any site disturbance or building permits being issued for the project, the staff comments listed in this report must be addressed and approved by each department.
- 2. Implement the development, traffic improvement and/or traffic control requirements from the Public Works and Community Development Department.
- 3. A fence and minimum 30-feet wide vegetative buffer will be required on the rear of any parcel adjacent to existing single family residential developments, all proposed landscaping and fencing materials must be approved by staff.
- 4. Under no circumstances shall any mechanical equipment or related elements such as air conditioning units, meter boxes and utility conduits, HVAC mechanical equipment systems, satellite dishes or any other similar mechanical equipment or related elements be attached or mounted to any exterior building elevation that is visible from pedestrian view from required sidewalks along adjacent private streets or sidewalks abutting a common area or community amenity. Any mechanical equipment or related elements located at finished grade shall be completely screened from view with dense, evergreen landscaping or an opaque wall veneered in brick, indigenous rock or natural stone, with an appearance that is complementary to the architecture of the dwelling unit. All roof mounted equipment shall be screened from the public right-of-way.
- 5. Parking shall be on a paved or concrete surface.
- 6. Pedestrian-scale street lighting shall be provided along both sides of internal streets throughout the development.
- 7. A minimum of eight alternative fuel vehicle charging stations shall be provided on the property by the developer prior to the issuance of any commercial certificate of occupancy.
- 8. Additional landscaping may be required alongside side elevation facing public roads.
- 9. Provide permanently anchored bicycle racks as part of the internal pedestrian pathway network for short-term use.
- 10. Appropriate landscape features and pedestrian amenities, such as shading, seating, lighting, public art, trash cans, and other street amenities shall be provided.
- 11. Site shall be developed substantially as depicted on the submitted site plan and elevations, labeled Exhibit B and Exhibit C, except for modifications required to comply with the conditions below and subject to meeting all City code requirements and conditions of zoning.
- 12. The applicant must submit an updated conceptual layout of site plan and the final building elevations subject to approval of the Planning Commission and in compliance with the zoning conditions.

Streetscape Standards:

Along Meadow Village Parkway, the development shall have street furniture, 5' pedestrian sidewalk on both sides, a green strip with trees buffer or planting and regularly placed streetlights, on street parking (on both sides), with 2 vehicular lanes, see Exhibit A. All other parking areas must have vehicular use area landscaping subject to city staff approval.

Development Standards:

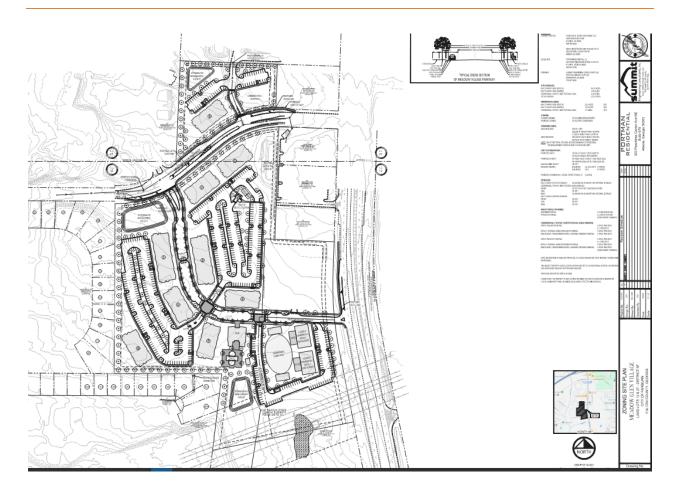
Maximum Density	364
Maximum Building Height (Buildings 1,2,4,6,7,8&9)	1 to 3 stories
Maximum Building Height (Buildings 3 and 5)	1 to 4 stories
Minimum Common Outdoor Area:	25%
Building Setbacks	
(1) Front:0'	
(2) Side:0'*	
*required 10'minimumseparation between structure	es
(3) Rear:15'	

Residential Standards:

The total number of units shall not exceed (364) total dwelling units:

- 1. To ensure a mix of uses, for every 182 residential units constructed, there shall be a minimum of 6,000 square feet of commercial, office, and/or institutional use constructed. The project shall include an amenity package for the residential units including a clubroom and pool.
- 2. Exterior materials on the residential units shall include a minimum of thirty percent (30%) brick or stone and forty percent (40%) stone or other cementitious materials. Vinyl siding and veneers are prohibited.
- 3. Along Meadow Village Parkway, each unit above the first floor will have at minimum one private balcony per unit. Balconies and decks shall consist of concrete or composite board decking materials and shall be supported by metal or wood brackets having an appropriate size and strength or with architectural columns or pillars also having an appropriate size and strength. The required brackets or architectural columns or pillars shall have an appearance that is complementary to the architecture of the overall structure.
- 4. The minimum heated floor area per residential unit shall be 600 square feet.

- 5. The number of three (3) bedroom multifamily units shall be limited to no more than ten percent (10%) of the total number of units.
- 6. Security bars on doors and or windows shall be prohibited.
- 7. All dumpsters shall be screened from public view on three sides by a masonry wall enclosure that is a minimum of eight feet in height. The fourth side shall provide access by an opaque steel gate.
- 8. Outdoor lighting shall incorporate shielding in their designs to reflect light away from adjacent properties and streets.


Standards for Non-Residential and Mixed-Use Buildings.

- 1. Building materials for facades of buildings oriented to public streets shall be constructed of brick, stone (natural or artificial), textured concrete masonry units, wood, stucco, cement-based siding, or glass. Polyvinyl chloride building products are prohibited.
- 2. The development shall include at least 12,000 sf of commercial, office, and/or institutional.
- 3. The length of facade without intervening fenestration, architectural detailing or entryway shall not exceed thirty (30) feet
- 4. All building facades that contain a public entrance shall include fenestration into their design. All fenestration treatments shall be visually and architecturally consistent and compatible with each other. The director of planning and zoning may consider fenestration amounts that differ from the standards above based upon the use, visibility from public areas, and other architectural treatments proposed on the structure.
- 5. The primary pedestrian access to all sidewalk level uses and business establishments with public or private street frontage, or parking lot frontage shall be directly accessible and visible from the sidewalk adjacent to such street or parking lot.
- The development must include a neighborhood park area with all the amenities and structures illustrated in the March 2024 Concept Rendering enclosed in the application.

Prohibited uses:

- 1. Drug rehabilitation center or other facility for treatment of drug dependency;
- 2. Halfway house;
- 3. Residential mental health facility;
- 4. Transitional housing facility;
- 5. Gas Stations;
- 6. Drive Through Restaurants;
- 7. Automotive repair and maintenance;
- 8. Home and garden equipment repair and maintenance;
- 9. Pawn shops;
- 10. Motor vehicle sales;
- 11. Any industrial uses;
- 12. Overnight commercial vehicle parking; and

Exhibit B

Exhibit C

Concurrent Variance

In accordance with Section 80-251, the applicant submitted a request for a concurrent variance is to reduce the required parking from 2.0 spaces per dwelling unit to 1.5 spaces per dwelling unit and to reduce required parking for restaurant use from 1 space per 100 square feet to 1 space per 150 square feet, Sec. 80-337.

Standards for Variance Consideration

Section 80-251 of the City's Zoning Ordinance includes one or more criteria, which must be met before a variance can be approved. Variances may be considered in all districts. Primary variances and concurrent variances shall only be granted upon showing that:

A. "Relief, if granted, would be in harmony with, or, could be made to be in harmony with, the general purpose and intent of this chapter; OR"

Yes, The zoning ordinance requires two parking spaces per dwelling unit, however, multifamily developments in this market and similar markets typically demand parking of 1.5 spaces and other developments have been granted relief from this requirement. Staff is of the opinion that the request to reduce the required parking from 2 spaces per unit to 1.50 spaces per unit is in harmony with the intent of the Zoning Ordinance and would not be a detriment to adjacent properties. The proposed 364-unit multi-family residential development would require 728 parking spaces and the applicant is proposing 424 surface parking spaces. The off-street parking regulations does not provide separate standards for multi-family or single-family development. Both residential uses require 2 parking spaces per dwelling units The majority of the units are one- and two-bedroom units; therefore, additional parking spaces will not be required to accommodate the number of proposed units. Additionally, the request is consistent with industry standards (1 to 1.5 spaces for 1 bedroom, 1.5 to 2 spaces for 2 bedrooms and 1.75 to 2 spaces for 3 bedrooms).

B. "The application of the particular provision of this chapter to a particular piece of property, due to extraordinary and exceptional conditions pertaining to that property because of its size, shape or topography, would create an unnecessary hardship for the owner while causing no detriment to the public; OR "

There are not extraordinary and exceptional conditions pertaining to the property due to its size, shape or topography. However, the property is subject to the Georgia Power easement.

B. A significant portion of the development does have an irregular shape with a significant amount of frontage on existing roads. N/A

Staff recommends **APPROVAL** of the concurrent variance petition.

APPLICATION FOR REZONING

City of Fairburn Community Development Department 26 W. Campbellton Street Fairburn, GA 30213

Date Received:
REZONING #: (Office Use Only)
APPLICANT INFORMATION
Applicant Name:Portman Residential
Address:303 Peachtree Center Ave NE Suite 575 Atlanta, GA 30303
Phone:404-934-0293
Email Address:mbrambrut@portmanresidential.com
OWNER INFORMATION (If different from Applicant) SEE NEXT PAGE FOR 2ND OWNER
Owner Name: White Brookwood Limited Liability Company
Address: 24 Stanton Way, Winder, GA 30680
Phone: Fax:
Email Address: _banker3434@gmail.com
PROPERTY INFORMATION
Address: o MEADOW GLEN CIR, FAIRBURN, GA 30213
Parcel ID#:09F020100121014 & 09F070000271062 Land Lot: <u>12 and 27</u> District: <u>09F</u>
REZONING REQUEST
Current Zoning: PD pursuant to Ordinance No. 98-07 Current Land Use: Highway Mixed-Use
Proposed Zoning: PD Proposed Land Use: No change - Highway Mixed-Use
Proposed Density (Residential Only): Maximum of 364 multifamily dwelling units

APPLICATION FOR REZONING

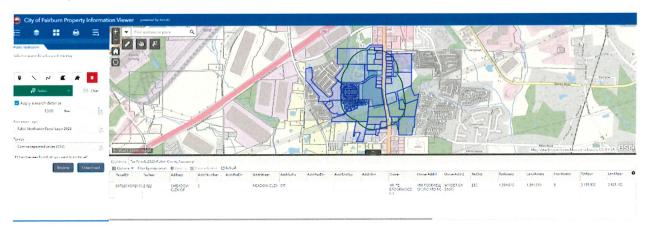
City of Fairburn Community Development Department 26 W. Campbellton Street Fairburn, GA 30213

Date Received:
REZONING #: (Office Use Only)
APPLICANT INFORMATION
Applicant Name: Portman Residential
Address:303 Peachtree Center Ave, NE
Phone:404-934-0293
Email Address:mbrambut@portmanresidential.com
OWNER INFORMATION (If different from Applicant) (2nd OWNER)
Owner Name: 3 Patas Real Estate Investments LLC
Address:2048 Fairhaven Circle, NE, Atlanta, GA 30305
Phone:404-784-9258 Cell: Fax:
Email Address:s.sanchez2000@yahoo.com
PROPERTY INFORMATION
Address:0 MEADOW GLEN CIR., FAIRBURN, GA 30213
Parcel ID#: 09F020100121014 & 09F070000271062 Land Lot: 12 and 27 District: 09F
REZONING REQUEST
Current Zoning: PD pursuant to Ordinance No. 98-07 Current Land Use: Highway Mixed-Use (vacant)
Proposed Zoning: PD Proposed Land Use: No change - Highway Mixed-Use (mixed use)
Proposed Density (Residential Only): Maximum of 364 multifamily dwelling units

SECTION I

REZONING REQUEST

	-
	ROAD FRONTAGE:
nilable):	
	described, respectfully petitions that said property be rezoned to an amended PD as described herein
	Proposed Zoning(s)
OWNER/PET	ITIONER
	d and notarized when the petition is submitted. Please
er and not the sole owner of t ner and petitioner complete P	he property complete Part 2.
ption, which is made part it had hid it is your own for the owner (at ption, which is made part grad hid it is your own for the owner (at	Sworn to and subscribed before me this the 18 Day of June 20 27 NOARY PUBLIC (770) 867-743/ PHONE NUMBER 2) he/she is the executor or Attorney-in-fact under a tach a copy of the Power-of-Attorney letter and type
act and type name of owr permits the petitioner to	has an option to purchase said property (attach a copy ner above as "Owner"); or (3) he/she has an estate for apply (attach a copy of lease and type name of owner
pson ee Confer 30303	Sworn to and subscribed before me this the Day of L 2024 NOTAR NOTARY PUBLIC PUBLIC OUNTY CHIONE NUMBER
	anilable): Interest in the property herein string Zoning(s) OWNER/PET art 2 below must be signed llows: Interest in the property and not the ser and not the sole owner of the property and not the ser and petitioner complete Prowners each must complete a series under oath that he/she ption, which is made part and whi



Meadow Glen Village: Public Participation Plan

Applicant: Portman Residential, LLC

1. The following individuals (property owners within 1000 feet of the property), homeowner's associations, political jurisdictions, other public agencies, etc. will be notified:

Using Fairburn's GIS database for public notification, the attached letter was mailed to the approximately 160 property owners within 1,000 feet of the property (see the attached database).

2. The individuals and others listed in 1. above will be notified of the requested rezoning/use permit using the following method(s): (e.g., letters, meeting notices, telephone calls, e-mails, etc.)

The individuals and others listed above were notified via the attached letter.

3. Individuals and others listed in 1. above will be allowed to participate in the following manner: (At least one meeting at a convenient time and location is required.)

Per the attached letter, individuals and others are invited to participate in the two virtual community meetings. Additionally, the applicant hosted two meetings with

representatives of the Meadow Glen HOA before hosting the official community meetings (one virtually on May 2nd, 2024 and one in person on May 22nd, 2024).

303 Peachtree Center Ave NE Suite 575 Atlanta, Georgia 30303 404, 614, 5252

June 5, 2024

VIA US MAIL

NOTICE TO INTERESTED PARTIES OF REZONING COMMUNITY MEETING

Date:

Tuesday, June 25th at 6:00 p.m. and Tuesday, July 23rd at 6:00 p.m.

Location:

Virtual Community Meetings (details provided below)

Petitioner:

Portman Residential

Dear Fairburn Neighbor:

Portman Residential (the "Petitioner") proposes a zoning amendment on an approximately 25-acre site located on the west side of Highway 74/Senoia Road and on the southern and northern side of Meadow Glen Parkway. The Petitioner is requesting a zoning amendment from the existing PD zoning district to accommodate its development plans for a mixed-use community comprising of retail, multifamily, and townhomes. A property map is included for your reference.

In accordance with the Public Participation Program requirements in the City of Fairburn Zoning Ordinance, the Petitioner will hold Official Community Meetings prior to the Public Hearing on this Rezoning Petition for the purpose of discussing this rezoning proposal with nearby property owners and organizations. The Fairburn GIS records indicate that you are either a representative of a registered neighborhood organization or an owner of property that adjoins or is located within 1,000 feet from the Property.

The Official Community Meeting will be held virtually in accordance with guidance provided by the Fairburn Planning Design & Development Department. We invite you to attend one or both virtual Official Community Meetings via Microsoft Teams on Tuesday, June 25th at 6:00 p.m. and/or Tuesday, July 23rd at 6:00 p.m.

You may join the virtual meeting by visiting the following website, and entering the following meeting ID and passcodes: www.microsoft.com/en-us/microsoft-teams/join-a-meeting

June 25th:

July 23'4:

Meeting ID: 219 262 793 262

Meeting ID: 226 776 938 861

Passcode: bHLqnz

Passcode: Nb9kj5

If you expect you will be unable to access the virtual meeting and would like additional information, please contact Marc Brambrut at mbrambrut@portmanresidential.com or call 404-934-0293 and we can make alternative arrangements for you to receive the rezoning information.

Sincerely,

Marc Brambrut

Senior Vice President, Development

Portman Meadow Glen Property Map

ParcellD Address	Owner	OwnerAddr1		TotAppr To	tAssess Lai	ndAcres LL	ode	le TaxDist Ta	xYear
09F020100120628 2024 MFADOW GI FN CIR	TAH 2017 2 BORROWER I I C	3027 JEFFERSON HWI	SANITA ANA CA 0270E	264060 11364160	04060	26.11 ZAI	25 52	8 8	2022
09F020100121022 8335 SENOIA RD	AMSDELL STORAGE VENTURES 52 LLC	20445 EMERALD PARKWAY DR STE 220	CLEVELAND OH 44135		2877120	5.86	396 C4	22 22	2022
09F010000123665 8315 CHAMPION TRL	SMART MILLS MONICA	8315 CHAMPION TRL	FAIRBURN GA 30213		106560	0.1607		52	2022
		1016 MEADOW GLEN CIR	FAIRBURN GA 30213	209800	83920	0.2697	101 R3	22	2022
		3024 MEADOW GLEN PASS	FAIRBURN GA 30213	198700	79480	0.1377		25	2022
09F0Z01001Z079Z 1005 MEADOW GLEN CIR	SMITH CHATTAM III & FRIESON LEONA L	1005 MEADOW GLEN CIR	FAIRBURN GA 30213	205600	82240	0.1377		25	2022
	BUTLER TRENECIA S	4/64 SUNSHINE AVE 1033 MFADOW GI EN CIB	SANIA ROSA CA 95409 FAIRRIRN GA 30213	239000	95600	0.1446	101 R3	52 52	2022
09F070300320304 7940 SENOIA RD	WADE PROPERTIES LLC	7490 CLUBHOUSE RD	BOULDER CO 80301	1055300	422120	0.98		25.	2022
09F070300260450 0 SENOIA RD	BISHOP KAMMERER LLC	7475 ROSWELL RD	ATLANTA GA 30328	2585600	1034240	1.129	301 C3	72	2022
09F020100120438 1048 MEADOW GLEN CIR	LEWIS EDWARD L & CATHERINE	1048 MEADOW GLEN CIR	FAIRBURN GA 30213	195300	78120	0.1748	101 R3	25	2022
09F010000124085 0 CHAMPION TRL	BOHANNON ROAD LLC	P O BOX 420367	ATLANTA GA 30342	59100	23640	19.486	100 R5	25	2022
09F020200130063 0 MILAM RD SUITE 100		131 GULF BRIDGE LN NW	SUNNYSIDE FL 32461	371900	148760	2.461		25	2022
ODEO20100120966 3012 MEADOW GLEN PASS		3012 MEADOW GLEN PASS	FAIRBURN GA 30213	203300	81320	0.1377	101 R3	52	2022
	VELEZ ALEX & RADOLFO A	3025 MEADOW GLEN PASS	FAIRBURN GA 30213	195700	78280	0.1377		25	2022
09F070000260628 0 SENOIA BD	VELEZ GLORIA A DEVEL OPMENT ALITHORITY OF FLII TON COLINTY	2036 MEADOW GLEN CIR 3715 NOBTHSIDE DKY STEL-310	FAIRBURN GA 30213	20/400	82960	0.2192	101 R3	25	2022
09F020100120594 2012 MEADOW GLEN CIR	V E PROPERTIES LLC	378 EBENEZER CHURCH RD	FAYETTEVILLE GA 30215-5208	195400	78160	0.1463	300 C3	2 2	2022
09F010000123772 5904 BLUEGRASS VIEW	2018 1 IH BORROWER LP	1717 MAIN ST STE 2000	KENSAL ND 58455-0607	158000	63200	0.1377		25.	2022
09F010000123830 5872 BLUEGRASS VIEW	BOYD MIA	5872 BLUEGRASS VW	FAIRBURN GA 30213	202000	80800	0.2934	101 R3	22 22	2022
09F020100120545 1092 MEADOW GLEN CIR	2018 4 IH BORROWER LP	1717 MAIN ST STE 2000	DALLAS TX 75201	200900	80360	0.2764		25	2022
	KOROMA ABU BAKARR KOROMA CYNTHIA	8303 CHAMPION TRL	FAIRBURN GA 30213	240600	96240	0.2404	101 R3	25	2022
09F010000123863 5881 BLUEGRASS VIEW	SFR JV 2 PROPERTY LLC	PO BOX 15087	SANTA ANA CA 92735	185100	74040	0.1377	101 R3	25	2022
	BOHANNON ROAD LLC	P O BOX 420367	ATLANTA GA 30342	100	40	10.003	111 R5	25	2022
	CHAPPELL PEARL & DORIS	1060 MEADOW GLEN CIR	FAIRBURN GA 30213	197200	78880	0.2011	101 R3	25	2022
09F020100120321 1004 MEADOW GLEN CIR	RAMDULAR NEIL & REBECCA	1004 MEADOW GLEN CIR	FAIRBURN GA 30213	196600	78640	0.17	101 R3	25	2022
09F020100120826 1017 MEADOW GLEN CIR	CARTER DELLA	1017 MEADOW GLEN CIR	FAIRBURN GA 30213		85200	0.1378	101 R3	25	2022
09F0Z01001Z1014 0 MEADOW GLEN CIR	WHITE BROOKWOOD LLC	450 ROCKWELL CHURCH RD NE	WINDER GA 30680	_	1394040	22.702	300 C5	25C	2022
OSFOZO1001Z11/O OSENOIA RU	CITY OF FAIRBURN GEORGIA	56 MALONE ST	FAIRBURN GA 30213	1878300		11.544	300 E1	22	2022
09F070300270343 /920 SENOIA KD	AB SIAR PROPERTY LLC	5295 LAKE BEACH DR	DOUGLASVILLE GA 30135	1767800	707120	0.7651	374 C3	52	2022
09F010000123/49 120 BELMONI 1EK	IOLSIOY GA LLC	853 BROADWAY FLOOR 5TH	NEW YORK NY 10033	232600	93040	0.2622	101 R3	55	2022
09F020100120768 1073 MEADOW GLEN CIR	ABVM 511.0	5937 BLUEGHASS VIEW 5001 PLAZA ON THE LAKE SLITE 200	FAIRBURN GA 30213	100000	09/68	0.13//	101 R3	52 32	2022
09F010000124051 8318 CHAMPION TBL	NGUYEN DAVID & TBAN LOAN T	SOUTH CHAMPION TRI	FAIRBLIRN GA 30213	175300	70120	0.1378		ς ξ	2022
	MERCHANT CENTERS LLC & GUTHBIF BAVIN DEVEL OPMENT LLC	P O BOX 599	EAVETTEVIIIE GA 30211-0500	615100	246040	4 107	300 C4	25.0	2022
09F020100120149 0 SENOIA RD	OFCHUS KEVIN B OFCHUS SONYA D	1820 PEACHTREE ST NE #903	ATLANTA GA 30309	310900	124360	9.8	300 64	250	2022
	BARBARA G BROWN INVESTMENTS LLC ET AL	201 ALLEN RD # 300	ATLANTA GA 30328	1144500	457800	0.858	373 C3	25	2022
09F020100120560 2000 MEADOW GLEN CIR	LUXOR SFR SPV 1 LLC	1114 AVENUE OF THE AMERICAS FLOOR 28TH	NEW YORK NY 10036	210900	84360	0.2635	101 R3	25	2022
	FAIRBURN 85 STORAGE LLC	3715 NORTHSIDE PKWY BLDG/STE 400 100	ATLANTA GA 30327	492200	196880	2.648	300 C4	25C	2022
OBFO10000123806 5892 BLUEGRASS VIEW	HODGES JANESSA	5892 BLUEGRASS VIEW	FAIRBURN GA 30213	272100	108840	0.1377	101 R3	52	2022
09F020100120095 J072 MEADOW GI EN CIB	PARACHI HIMOLINI II & MARSHA POE DOBOTHY I & PEATTY CHERAMIE	339 IRICKUM CREEK KD	1YRONE GA 30290-9/05	91500	36600	1.86	300 C3	52 12	2022
	JONES ANTHONY & JONES RHONDA ALICIA	5893 BLIFGBASS VIEW	FAIRBURN GA 30213	213400	70920	0.1377	101 R3	6 K	2022
09F010000123954 5917 BLUEGRASS VIEW	MC CAIN ARLICIA N	5917 BLUEGRASS VIEW	FAIRBURN GA 30213	247300	98920	0.1377	101 R3	22	2022
	EDWARDS BATISA	1057 MEADOW GLEN CIR	FAIRBURN GA 30213	203800	81520	0.1378	101 R3	25	2022
09F070000279958 7975 SENOIA RD	875 WOODSTOCK LLC	2145 DULUTH HWY STE A	DULUTH GA 30097	1656200	662480	2.13	348 C4	25C	2022
09F010000123756 5912 BLUEGRASS VIEW	CALDERON MAIRA ARELY NOLASCO & NOLASCO NELSON A LINARES	5912 BLUEGRASS VW	FAIRBURN GA 30213	241800	96720	0.1748	101 R3	25	2022
09F010000124010 5941 BLUEGRASS VIEW	HAUGHTON RACQUEL R	5941 BLUEGRASS VW	FAIRBURN GA 30213	249900	09666	0.1377	101 R3	25	2022
09F020100120412 1040 MEADOW GLEN CIR	WARE CHRISTINE	1040 MEADOW GLEN CIR	FAIRBURN GA 30213	192600	77040	0.1377	101 R3	25	2022
09F020100120776 1077 MEADOW GLEN CIR		P O BOX 4090	SCOTTSDALE AZ 85261	205900	82360	0.1377	101 R3	25	2022
09F020100120/19 301/ MEADOW GLEN PASS		3017 MEADOW GLEN PASS	FAIRBURN GA 30213	192600	77040	0.1377	101 R3	22	2022
OSFO10000124069 8314 CHAMPION IRL	DANCER ERIC A	8314 CHAMPION TRL	FAIRBURN GA 30213	227500	91000	0.1381	101 R3	22	2022
09F010000123699 105 BELMONTTER	FEI DER JEREMY	1850 PARKWAY PL SIE 900 105 BEI MONT TEB	MARIETTA GA 30067	144600	57840	0.1377	101 R3	25	2022
09F010000123814 5888 BLUEGRASS VIEW	SFR ASSETS OWNER LLC	8300 N MODAC EXPRESSIMAY STE 200	ALISTIN TX 78759	226000	00166	0.1004		3 5	2022
09F020100120578 2004 MEADOW GLEN CIR	BHOWMICK VIKASH	2004 MEADOW GLEN CIR	FAIRBURN GA 30213	199900	79960	0.13//		25 53	2022
				7000		77.0		3	7707

FAIRBURN GA 30213 199200 79680 0.1524 101 R3	MCDONOUGH GA 30253 183400 73360 0.85 300 C3	FAIRBURN GA 30213 974600 5.268 300 E1	356300 142520 0.584 300	36 325600 130240 15.78 100	FAIRBURN GA 30213 236900 94760 0.2057 101 R3	MD 20743 199800 79920 0.1377 101	925300 370120 1.034 325	51 210700 84280 0.1446 101	185200 74080 0.1377 101	SAN FRANCISCO CA 94105 199700 79880 0.1377 101 R3	FAIRBURN GA 30213 223200 89280 0.1705 101 R3	FAIRBURN GA 30213 248100 99240 0.3613 101 R3	FAIRBURN GA 30213-4236 205200 82080 0.1656 101 R3	FAIRBURN GA 30213 198300 79320 0.1377 101 R3	SCOTTSDALE AZ 85261 189000 75600 0.138 101 R3	FAIRBURN GA 30213 198700 79480 0.2632 101 R3	241200 96480 0.1377	689480 1.034 374	-3136 200500 80200 0.1636 101	3 237800 95120 0.1377 101	1564800 625920 1.868 374	256200 102480	CI EVEL AND OH 44135 2508E00 1003440 4 04 306	MABIETTA CA 20067 240000 10055445 4:04 350	248900 99300 0.1901 IOI	196800 78720 0.1377 101	191400 76560 0.1468 101	229900 91960 0.1377 101	30005 197500 79000 0.1378 101	251800 100720 0.2683 101	247300 98920 0.1377 101	FAIRBURN GA 30213 ZZZZUO 88880 0.1409 101 K3 FAIRBURN GA 30213 199500 79800 0.1377 101 R3	277 210200 84080 0.3053 101	749600 299840 0.858 325	FAIRBURN GA 30213 202500 81000 0.1377 101 R3	.3 200000 80000 0.1377 101	343600 137440 0.91 300	222800 89120 0.3008 101	EAIDRI DA 300135 /80/00 312280 1.43 339 C3	247100 98840 0.1377 101	9705 61800 24720 0.929 100	219700 87880 0.1446 101	FAIRBURN GA 30213 277700 1	NEW YORK NY 10036 226100 90440 0.1377 101	GA 30269 472500 189000 1 300	237700 95080 0.1377 101	199100 79640 0.1501 101	190000 76000 0.1663 101	3 204300 81720 0.1377 101 101 75 6699 7 100	WINDER 6A 30680 163200 66080 7.5 100 R4	
1084 MEADOW GLN	136 HOOD ST STE C	56 MALONE ST	1369 MONROE DR	9497 THORNTON BLVD	5949 BLUEGRASS VIEW	9200 E HAMPTON DR	1280 SNOWS MILL RD	P O BOX 4090	5897 BLUEGRASS VIEW	530 HOWARD ST STE 100	3029 MEADOW GLEN PASS	135 BELMONT TER	1028 MEADOW GLEN CIR	3008 MEADOW GLEN CIR	P O BOX 4090	1052 MEADOW GLEN CIR	NNY 5900 BLUEGRASS VW	1931 STRADELLA RD	2016 MEADOW GLEN CIR	5885 BLUEGRASS VW	3350 RIVERWOOD PKWY STE 450	830/ CHAMPION IRL	2044 HEADOW SCEN CIR	1950 BADWANY DI STE DOO	1008 MFADOW GLEN CIR	1049 MEADOW GLEN CIR	1025 MEADOW GLEN CIR	5905 BLUEGRASS VIEW	950 NORTHPOINT PKWY	5001 PLAZA ON THE LK STE 200	5933 BLUEGRASS VIEW	1032 MEADOW GLEN CIR 3009 MEADOW GLEN PASS	P O BOX 596	201 ALLEN RD STE 300	1076 MEADOW GLEN CIR	1037 MEADOW GLEN CIR	3890 REDWINE RD SW STE 210	796 SACCO PL	5206 I ANDRIM PD	1850 PARKWAY PL STE 900	339 TRICKUM CREEK RD	8319 CHAMPION TRL	3028 MEADOW GLEN PASS	1114 AVENUE OF THE AMERICAS FLOOR 29TH	726 SOUTH FAIRFIELD DR	5001 PLAZA ON THE LK STE 200	1044 MEADOW GLEN CIR	8310 CHAMPION TRL	3016 MEADOW GLEN DR	450 ROCKWELL CHURCH RU NE	
SPRINGER CORBIN & DENNIS	MILAM VILLAGE LLC	CITY OF FAIRBURN GEORGIA	CLG FAIRBURN LLC	KNIGHT GROUP THE	BAIER APRIL	SFR XII ATL OWNER 6 L P	LANE CREEK INVESTMENTS LLC	PROGRESS RESIDENTIAL BORROWER 3 LLC	WASHINGTON BLAIR		BANKS MONIQUE & DASHAWN	GRACE RAYMOND L	GIBSON VICKIE	BARNETT CHANTELL M	YAMASA CO LTD	SWANN BERTHA M	HOUSTON SHAQUONZA & HOUSTON WAYNE ANTHONY	MEADOW GLEN PARTNERS LLC	PACE CHRISTOPHER	OPENDOOR PROPERT		WAQUOI PAIIENCE	AMSDELL STORAGE VENTURES 50 LLC	EKH SEB C1 I P	SHARPEWILLIAMI	ARMOUR WILLIE	BRIDGES CASSANDRA J	SWINGER CHERYL B	IH4 PROPERTY GEORGIA LP	SRMZ 3 LLC	JORDAN SHIRL	TREIO JOSE R		IH KRYSTAL FAIRBURN LLC	HOSEA CELICE	HERNANDEZ SARA	CMSGS INVESTMENTS LLC	SUIPHIN ANTHONY	WASHINE FASI FAIRBORIN LLC	FKH SFR C1 LP	PARROTT TIMOTHY H & MARSHA	MC CORD ROMON		LUXOR SFR SPV 1 LLC	GARCIA HURFILIO GARCIA	RH PARTNERS OWNERCO LLC	MAKIINEZ ABEL		MULTE BEOOKWOOD LIMITED LIABILITY OO	DAMCHADAN MICHAEL & ANNIE	
09F020100120529 1084 MEADOW GLEN CIR	09F020200132937 0 SENOIA RD		09F070300270483 8040 SENOIA RD UNIT 1B	09F010000114185 0 MEADOW GLEN WAY	09F010000124036 5949 BLUEGRASS VIEW						09F020100120743 3029 MEADOW GLEN PASS	09F010000123723 135 BELMONT TER		09F020100120974 3008 MEADOW GLEN CIR	09F020100120685 3005 MEADOW GLEN PASS	09F020100120446 1052 MEADOW GLEN CIR		09F020100121089 8055 MEADOW GLEN CIR		09F010000123871 5885 BLUEGRASS VIEW		OSFO10000123840 8307 CHAMPION IRL	09F020100121154 8335 SFNOIA BD	09E010000124044 8322 CHAMPION TBI	09F020100120339 1008 MEADOW GLEN CIR		09F020100120834 1025 MEADOW GLEN CIR	09F010000123921 5905 BLUEGRASS VIEW	09F020100120750 1069 MEADOW GLEN CIR	09F010000123731 130 BELMONT TER	09F010000123996 5933 BLUEGRASS VIEW		09F020100120552 1096 MEADOW GLEN CIR		09F020100120503 1076 MEADOW GLEN CIR		09F070300270236 0 SENOIA RD	09F020100120636 2028 MEADOW GLEN CIR		09F010000123913 5901 BLUEGRASS VIEW		09F010000123673 8319 CHAMPION TRL		09F010000123962 5921 BLUEGRASS VIEW		09F010000123764 5908 BLUEGRASS VIEW		09F0100001240// 8306 CHAMPION IRL	OSFOZO1001ZOSS8 3016 MEADOW GLEN PASS	09F07010012035 J1020 MEADOW GLEN CIR	USFUZUTUO IZUSUZ TUZU PIEADOW GLEIN CIR

5 2022	5 2022	5 2022						5 2022	5 2022	5 2022	5 2022	5 2022	5 2022	2022	5 2022	5 2022	5 2022			5 2022	5 2022	5 2022	5 2022	5 2022	5 2022	3.3	1.2		2022	5 2022		-	5 2022	5 2022	5 2022		•	5 2022
25	25	25	25	25	25	28	25	23	23	23	25	23	25	25C	22	25	25	25	25	23	25	25	25	25	25	25	25	. 25	25C	25	25	25	25	25	25	25	25	23
101 R3 101 R3	300 C3	888 C5	101 R3	101 R3	101 R3		101 R3	2A1 C5	101 R3	101 R3	101 R3	101 R3	101 R3	321 C4	101 R3	101 R3	300 C3	101 R3	300 C5	101 R3	300 C4	101 R3	101 R3	101 R3	300 E1	101 R3		101 R3	339 C3	101 R3	101 R3	101 R3	101 R3	300 CS	101 R3	101 R3	101 R3	101 R3
0.1807	1.067	17.528	0.1377	0.1377	0.2384	0.207	0.2043	26.48 2	0.1788	0.1377	0.1547	0.138	0.2328	2.32	0.1963	0.1468	0.926	0.2342	31.046	0.1377	2.452	0.1377	0.1377	0.1931	11.796	0.1995	0.1381	0.1377	0.63	0.1377	0.1378	0.1377	0.2012	14.243	0.1377	0.3316	0.1377	0.1475
83680	184800	0606096	77320	90240	91240	100760	80000	11476000	109360	09666	81240	56640	75200	506920	96160	87440	138600	79320	2343320	90840	44200	92080	76160	98600		76800	80880	91120	26920	88760	82000	80760	89600	266600	76760	86600	98600	81880
209200	462000	43677700	193300	225600	228100	251900	200000	28690000	273400	249900	203100	141600	188000	1267300	240400	218600	346500	198300	5858300	227100	110500	230200	190400	246500	1480600	192000	202200	227800	67300	221900	205000	201900	224000	666500	191900	216500	246500	204700
FAIRBURN GA 30213 FAIRBURN GA 30213	ATLANTA GA 30328	ATLANTA GA 30327	FAIRBURN GA 30213	FAIRBURN GA 30213	FAIRBURN GA 30213	FAIRBURN GA 30213	FAIRBURN GA 30213	NORFOLK VA 23510	AUSTIN TX 78746	FAIRBURN GA 30213	TYRONE GA 30290	SCOTTSDALE AZ 85255	DALLAS TX 75202	LEBANON TN 37087	FAIRBURN GA 30213	FAIRBURN GA 30213	PEACHTREE CITY GA 30269	FAYETTEVILLE GA 30214	AUBURN AL 36830	FAIRBURN GA 30213	CLEVELAND OH 44135	FAIRBURN GA 30213	SCOTTSDALE AZ 85261	AUSTIN TX 78759	FAIRBURN GA 30213	FAIRBURN GA 30213	FAIRBURN GA 30213	FAIRBURN GA 30213	DULUTH GA 30097-4007	FAIRBURN GA 30213	FAIRBURN GA 30313	CHRISTIANSTED 00820	SCOTTSDALE AZ 85261	SUNNYSIDE FL 32461	FAIRBURN GA 30213	FAIRBURN GA 30213	FAIRBURN GA 30213	FAIRBURN GA 30213
1088 MEADOW GLEN CIR 5873 BLUEGRASS VIEW	7475 ROSWELL RD	3715 NORTHSIDE PKY STE I-310	1080 MEADOW GLEN CIR	1041 MEADOW GLEN CIR	2032 MEADOW GLEN CIR	5877 BLUEGRASS VIEW	1000 MEADOW GLEN CIR	999 WATERSIDE DR STE 2300	5001 PLAZA ON THE LK STE 200	5913 BLUEGRASS VW	P.O. BOX 592	8665 E HARTFORD DR STE 200	901 MAIN ST STE 4700	307 HARTMANN DR	125 BELMONT TER	1021 MEADOW GLEN CIR	726 S FAIRFIELD DR	145 EDMONDSON WAY	1922 PROFESSIONAL CIR STE 100	5896 BLUEGRASS VIEW	20445 EMERALD PARKWAY DR STE 220	5889 BLUEGRASS VIEW	P O BOX 4090	8300 N MOPAC EXPRESSWAY # 200	56 MALONE ST	1012 MEADOW GLEN CIR	1053 MEADOW GLEN CIR	1001 MEADOWS GLEN CIR	2145 A DULUTH HIGHWAY 120	5909 BLUEGRASS VW	1029 MEADOW GLEN CIR	1110 STRAND ST STE 2A	PO BOX 4090	131 GULF BRIDGE LN	3013 MEADOW GLEN PASS	1056 MEADOW GLEN CIR	5884 BLUEGRASS VIEW	2008 MEADOW GLEN CIR
ELDER LARRY & KIMBERLY STROZIER ANTHERY W	BISHOP KAMMERER II LLC	DEVELOPMENT AUTHORITY OF FULTON COUNTY	SMITH TJUANA TAVARES	JOHNSON MAURICE	DENHAM SHANNON A	MILLS MELISSA L	PAREDES LUSI G & CHICAS HECTOR M	PEACHTREE LANDING GARDENS LP	ALTO ASSET COMPANY 1 LLC	GEMES KATRINA A	LESLIE JAMES	COLFIN AI GA 1 LLC	2014 2 IH BORROWER L P	CBOCS	ROUNDTREE ALCANA A	CAMERON DELABIA L	GARCIA MARICELA GARCIA	PLEHN NHORA M	OCP FAIRBURN LLC	BROWN KEISHA T	AMSDELL STORAGE VENTURES 52 LLC	MC CARTHNEY MACK & MARGARET	PROGRESS RESIDENTIAL BORROWER 11 LLC	US SFE ASSET COMPANY 2 LLC	CITY OF FAIRBURN GEORGIA	COLON VIVIAN	PORTER BERYL RODERICK	MAYS CAANDI G	875 WOODSTOCK LLC	FRANCOIS MICHELLE	QUARLES JAMES H & JOYCE	HOME SFR BORROWER II LLC	PROGRESS RESIDENTIAL BORROWER 17 LLC	FAIRBURN SHOPS LLC	ELLIS JACQUELINE	STEPHENS CALVIN A	LOCKETT SHERRY L & WHITTIE	WILLIAMS MAI LAN
09F020100120537 1088 MEADOW GLEN CIR 09F010000123848 5873 BLUEGRASS VIEW	09F070300260443 0 SENOIA RD	09F070300260476 8040 SENOIA RD UNIT 1A	09F020100120511 1080 MEADOW GLEN CIR	09F020100120875 1041 MEADOW GLEN CIR	09F020100120644 2032 MEADOW GLEN CIR	09F010000123855 5877 BLUEGRASS VIEW	09F020100120313 1000 MEADOW GLEN CIR	09F070000270999 7915 SENOIA RD	09F010000123681 8323 CHAMPION TRL	09F010000123947 5913 BLUEGRASS VIEW	09F020100120818 1013 MEADOW GLEN CIR	09F020100120982 3004 MEADOW GLEN PASS COLFIN AI GA 1 LLC 09F070300273487	09F020100120370 1024 MEADOW GLEN CIR	09F070000279982 7995 SENOIA RD	09F010000123715 125 BELMONT TER	09F020100120677 1021 MEADOW GLEN CIR	09F070300260435 0 SENOIA RD	09F020100120610 2020 MEADOW GLEN CIR	09F020100121204 8040 SENOIA RD UNIT 4B-1	09F010000123798 5896 BLUEGRASS VIEW	09F020100121048 0 LANDRUM RD	09F010000123889 5889 BLUEGRASS VIEW	09F020100120487 1068 MEADOW GLEN CIR	09F010000123657 8311 CHAMPION TRL	09F020100121113 8140 SENOIA RD	09F020100120347 1012 MEADOW GLEN CIR	09F020100120909 1053 MEADOW GLEN CIR	09F020100120784 1001 MEADOW GLEN CIR	09F070000279974 0 SENOIA RD	09F010000123939 5909 BLUEGRASS VIEW	09F020100120842 1029 MEADOW GLEN CIR	09F020100120404 1036 MEADOW GLEN CIR	09F010000124028 5945 BLUEGRASS VIEW	09F020200130436 5650 MILAM RD	09F020100120701 3013 MEADOW GLEN PASS	09F020100120453 1056 MEADOW GLEN CIR	09F010000123822 5884 BLUEGRASS VIEW	09F020100120586 2008 MEADOW GLEN CIR

AREA TABLE

TRACT A: 879,386 SQ.FT. OR 20.1880 AC. 109,682 SQ.FT. OR 2,5179 AC. TRACT D: 128,646 SQ.FT. OR 2.9533 AC.

TOTAL:

1,117,714 SQ.FT. OR 25.6592 AC.

REFERENCE MATERIAL

- . GDOT R/W PLANS FOR STATE ROUTE 74 FEDERAL AID PROJECT CSNHS-0007-00(841)
- DATED MAY 22, 2018 & LAST REVISED MARCH 28, 2019 2. PRELIMINARY SUBDIVISION PLAT OF MEADOW GLEN OUTPARCELS PREPARED BY METRO ENGINEERING & SURVEYING CO, INC.
- 3. ALTA/ACSM LAND TITLE SURVEY FOR WHITE CONSTRUCTION COMPANY PREPARED BY ROCHESTER & ASSOCIATES, INC.
- 4. ALTA/NSPS LAND TITLE SURVEY FOR BBC INVESTMENT PARTNERS, LLC AND FIDELITY NATIONAL TITLE INSURANCE COMPANY PREPARED BY GEOSURVE DATED AUGUST 10, 2022

5. DEEDS AND PLATS AS SHOWN HEREON.

SURVEY NOTES

A TRIMBLE "S" SERIES TOTAL STATION WAS USED TO OBTAIN ANGULAR MEASUREMENTS ND DISTANCE MEASUREMENTS.

TRIMBLE R-12 DUAL FREQUENCY GPS UNIT WAS USED FOR ESTABLISHING CONTROL. A NETWORK ADJUSTED RTK SURVEY WAS PERFORMED AND ADJUSTED Y RELATIVE POSITIONAL ACCURACY.

HIS SURVEY HAS BEEN CALCULATED FOR CLOSURE AND RACT A IS ACCURATE WITHIN ONE FOOT IN 1,117,386 FEET TRACT C IS ACCURATE WITHIN ONE FOOT IN 155,332 FEET TRACT D IS ACCURATE WITHIN ONE FOOT IN 279,106 FEET

THE FIELD DATA LIPON WHICH THIS SURVEY IS BASED, ARE WITHIN THE POSITIONAL TOLERANCES ALLOWED FOR ALTA/NSPS LAND TITLE SURVEY PER THE 2021 MINIMUM TECHNICAL STANDARDS ESTABLISHED BY ALTA AND NSPS AND WAS ADJUSTED USING THE LEAST SQUARES METHOD.

THE BEARINGS SHOWN ON THIS SURVEY ARE COMPUTED ANGLES BASED ON A GRID BEARING BASE (GA WEST ZONE) NAD83.

ALL HORIZONTAL DISTANCES SHOWN ARE GROUND DISTANCES. MEASURING UNITS OF THIS SURVEY ARE IN U.S. SURVEY FEET.

CONTOURS ARE SHOWN AT TWO FOOT INTERVALS. ELEVATIONS ARE BASED ON RTK GLOBAL POSITIONING SYSTEMS OBSERVATION AND ARE RELATIVE TO NAVD 88 DATUM. FIELD WORK FOR THIS PROPERTY WAS COMPLETED ON JUNE 7, 2024.

DUE TO VARIANCES IN GPS EQUIPMENT, TECHNIQUES, FEDERAL ADJUSTMENTS O STATE PLANE MODELS AND DAILY CONDITIONS IMPACTING GPS RECEPTIVITY GPS SOLUTIONS MAY VARY FROM THOSE PROVIDED ON THIS SURVEY BOTH HORIZONTALLY AND VERTICALLY. ANY AND ALL CONTRACTORS, CONSULTANTS, NDIVIDUALS OR ENTITIES RELYING ON STATE PLANE COORDINATES TO RELATE O DATA PROVIDED ON THIS SURVEY MUST LOCALIZE TO THE SURVEY CONTROL ENCHMARKS OR PROPERTY MONUMENTATION, ESTABLISHED BY THIS SURVEY IN ORDER TO ENSURE ACCURACY OF DATA. THE OWNER, HIS EMPLOYEES, HIS CONSULTANTS, HIS CONTRACTORS, AND/OR HIS AGENTS SHALL HEREBY DISTINCTLY UNDERSTAND THAT THE SURVEYOR IS NOT RESPONSIBLE FOR ISSUES ENCOUNTERED DUE TO FAILURE TO LOCALIZE DIRECTLY TO THIS SURVEY DATUM.

INFORMATION REGARDING SIZE, LOCATION, AND SPECIES OF EXISTING TREES IS SHOWN HEREON. THERE IS NO CERTAINTY OF THE SIZE AND SPECIES OF THE SAID FREES WITHOUT VERIFICATION FROM THE DESIGNATED ARBORIST BY THE LOCAL REGULATORY AUTHORITY. THE OWNER, HIS EMPLOYEES, HIS CONSULTANTS, HIS CONTRACTORS, AND/OR HIS AGENTS SHALL HEREBY DISTINCTLY UNDERSTAND THAT THE SURVEYOR IS NOT RESPONSIBLE FOR THE CORRECTNESS OR SUFFICIENCY OF THIS INFORMATION SHOWN HEREON EXCEPT BY APPROVAL OF SAID AUTHORITY.

THIS SURVEY MAY NOT REPRESENT OFFSITE PAINT STRIPING TO THE ACCURACY REQUIRED FOR LANE DESIGN. TERRAMARK LOCATES THE EDGE OF PAVING AND CRITICAL POINTS TO REFLECT ACCURATE TOPOGRAPHIC DATA ONLY, ACCURACY OF PAINT LOCATIONS SHOULD BE VERIFIED WITH SURVEYOR PRIOR TO USING THIS SURVEY FOR DESIGN.

INFORMATION REGARDING THE REPUTED PRESENCE, SIZE, CHARACTER, AND LOCATION OF EXISTING UNDERGROUND UTILITIES AND STRUCTURES IS SHOWN HEREON, THERE IS NO CERTAINTY TO THE ACCURACY OF THIS INFORMATION AND T SHALL BE CONSIDERED IN THAT LIGHT BY THOSE USING THIS DRAWING. THE LOCATION AND ARRANGEMENT OF UNDERGROUND UTILITIES AND STRUCTURES SHOWN HEREON MAY BE INACCURATE AND UTILITIES AND STRUCTURES NOT SHOWN MAY BE ENCOUNTERED. THE OWNER, HIS EMPLOYEES, HIS CONSULTANTS HIS CONTRACTORS, AND/OR HIS AGENTS SHALL HEREBY DISTINCTLY UNDERSTAND HAT THE SURVEYOR IS NOT RESPONSIBLE FOR THE CORRECTNESS OR SUFFICIENCY OF THIS INFORMATION SHOWN HEREON AS TO SUCH UNDERGROUND INFORMATION.

INFORMATION REGARDING STORM SEWER AND SANITARY SEWER AS SHOWN HEREON, IS BASED ON OBSERVATIONS TAKEN BY TERRAMARK EMPLOYEES AT THE GROUND ELEVATION OF THE EXISTING STRUCTURE. TERRAMARK EMPLOYEES ARE NOT AUTHORIZED TO ENTER A CONFINED SPACE SUCH AS A STRUCTURE THEREFORE, THERE IS NO CERTAINTY OF THE PIPE SIZES AND PIPE MATERIAL THAT ARE SHOWN ON THIS SURVEY. EXCAVATION BY A CERTIFIED CONTRACTOR IS THE ONLY WAY TO VERIFY PIPE SIZE AND MATERIAL. THE OWNER, HIS EMPLOYEES, HIS CONSULTANTS, HIS CONTRACTORS, AND/OR HIS AGENTS SHALL HEREBY DISTINCTLY UNDERSTAND THAT THE SURVEYOR IS NOT RESPONSIBLE FOR THE CORRECTNESS OR SUFFICIENCY OF THE PIPE INFORMATION SHOWN HEREON.

TERRAMARK LAND SURVEYING, INC. WAS UNABLE TO DETERMINE THE EXTENT OF PIPES MARKED AS APPROXIMATE DIRECTION ONLY. AFORESAID PIPE IS DRAWN ON THE SURVEY TO REFLECT THE OBSERVED DIRECTION BASED UPON A VISUAL INSPECTION OF THE STRUCTURE ONLY AND IS SHOWN FOR INFORMATIONAL PURPOSES.

STATE WATERS AND BUFFERS AS SHOWN OR NOT SHOWN HEREON ARE SUBJECT TO REVIEW BY LOCAL JURISDICTION OFFICIALS. IT IS THE RESPONSIBILITY OF THE LOCAL AUTHORITY TO DETERMINE SPECIFIC WATER CLASSIFICATION. THEREFORE ERRAMARK LAND SURVEYING ACCEPTS NO RESPONSIBILITY IN THE IDENTIFICATION OF SAID WATERS OR BUFFERS IDENTIFIED OR NOT IDENTIFIED HEREON.

PROPERTY IS SUBJECT TO RIGHTS OF UPPER AND LOWER RIPARIAN OWNERS IN AND TO THE WATER OF CREEKS AND BRANCHES CROSSING OR ADJOINING SUBJECT

PROPERTY AND THE NATURAL FLOW THEREOF, FREE FROM DIMINUTION OR POLLUTION THIS SURVEY WAS PREPARED FOR THE EXCLUSIVE USE OF THE PERSON, PERSONS OR ENTITY NAMED HEREON. THIS SURVEY DOES NOT EXTEND TO ANY UNNAMED PERSON, PERSONS OR ENTITY WITHOUT THE EXPRESS CERTIFICATION BY THE SURVEYOR NAMING SAID PERSON, PERSONS OR ENTITY.

TERRAMARK LAND SURVEYING, INC. DOES NOT WARRANT THE EXISTENCE OR NON-EXISTENCE OF ANY WETLANDS OR HAZARDOUS WASTE IN THE SURVEY AREA.

TRACT A & D: PORTMAN RESIDENTIAL, LLC & FIDELITY NATIONAL TITLE INSURANCE COMPANY TRACT C: 3 PATAS REAL ESTATE INVESTMENTS LLC & FIDELITY NATIONAL TITLE INSURANCE COMPANY (MEADOW GLEN VILLAGE)

LOCATED IN LAND LOTS 12 & 27, DISTRICT 9F CITY OF FAIRBURN, FULTON COUNTY, GEORGIA

LOCATION MAP

LAT - 33°32'02.57" N

AREAS OF INTEREST TABLE

AREA OF INTEREST

OR DEVELOPMENT OF THIS PROPERTY

- 1. COMMUNCIATION LINE CROSSES PROPERTY LINE ELECTRIC LINE CROSSES PROPERTY LINE
- FENCE AND COLUMNS ON SUBJECT PROPERTY 4. LIGHT POLE ON PROPERTY LINE
- 5. FENCE CROSSES PROPERTY LINE STORM PIPE CROSSES PROPERTY LINE
- STORM PIPE CROSSES PROPERTY LINE 8. STORM PIPE CROSSES PROPERTY LINE
- 9. ELECTRIC LINE RUNS THROUGH SUBJECT PROPERTY
- 10. GUY WIRES CROSS PROPERTY LINE 11. COMMUNCIATION LINE CROSSES PROPERTY LINE
- 12. COMMUNCIATION LINE CROSSES PROPERTY LINE

13. STORM PIPE CROSSES PROPERTY LINE

CERTIFICATION AND DECLARATION IS MADE TO THE ENTITIES AS LISTED IN THE TITLE

SUBSURFACE AND ENVIRONMENTAL CONDITIONS WERE NOT EXAMINED OR CONSIDER AS A PART OF THIS SURVEY, NO STATEMENT IS MADE CONCERNING THE EXISTENCE OF UNDERGROUND OR OVERHEAD CONTAINERS OR FACILITIES THAT MAY AFFECT THE US

PROFESSIONAL ENGINEERING AND LAND SURVEYING SERVICES SHALL MEAN A SIGNED

. TO THE BEST OF MY KNOWLEDGE, INFORMATION AND BELIEF, EASEMENTS, COVENANTS AND RESTRICTIONS REFERENCED IN THE TITLE COMMITMENT, OBSERVED FROM A PHYSICAL INSPECTION OF THE SUBJECT PROPERTY OR OTHERWISE KNOWN TO ME HAVE BEEN PLOTTED HEREON OR OTHERWISE NOTED AS TO THEIR EFFECT ON THE

THERE ARE NO SIGNIFICANT OBSERVATIONS ONTO ADJOINING PREMISES, STREETS OR ALLEYS BY BUILDINGS, STRUCTURES OR OTHER IMPROVEMENTS LOCATED ON THE SUBJECT PROPERTY, AND NO SIGNIFICANT OBSERVATIONS ONTO THE SUBJECT PROPERTY BY BUILDINGS. STRUCTURES OR OTHER IMPROVEMENTS SITUATED ON THE

PROVIDED IN THE SURVEY NOTES.

DUMP, SUMP OR SANITARY LANDFILL AS OF THE LAST DAY OF FIELD WORK PROVIDED IN THE SURVEY NOTES.

THERE IS NO OBSERVED EVIDENCE OF CEMETERIES, GRAVESITES OR BURIAL GROUNDS AS OF THE LAST DAY OF FIELD WORK PROVIDED IN THE SURVEY NOTES.

9. WETLAND FLAGGING PERFORMED BY OTHERS WAS OBSERVED ON THE SUBJECT PROPERTY AND IS SHOWN ON THE SURVEY.

THE COURSE OF PROPERTY RESEARCH OR FIELD WORK EXAMINATION.

THERE IS NO OBSERVED EVIDENCE OF RECENT STREET OR SIDEWALK CONSTRUCTION OR REPAIRS.

12. NO BUILDINGS WERE OBSERVED BY TERRAMARK AT THE TIME OF SURVEY.

13. NO PARKING SPACES WERE OBSERVED BY TERRAMARK AT THE TIME OF SURVEY.

UTILITY NOTES

SETBACKS & LANDSCAPE BUFFERS SHOWN PER REF. #2, #4, & PB. 446 PG. 84

LOCAL GOVERNING AUTHORITIES SHOULD BE CONSULTED TO

VERIFY THE DIMENSIONS OF THE SETBACKS SHOWN HEREON.

SITE INFORMATION

CURRENT OWNER: WHITE BROOKWOOD LIMITED LIABILITY COMPANY

CURRENT OWNER: WHITE BROOKWOOD LIMITED LIABILITY COMPANY

TAX PARCEL ID # 09F020100121014 (A PORTION OF)

TAX PARCEL ID # 09F020100121014 (A PORTION OF)

CURRENT OWNER: 3 PATAS REAL ESTATE INVESTMENTS LLC

ADDRESS: UNASSIGNED

ADDRESS: UNASSIGNED

ADDRESS: UNASSIGNED

TAX PARCEL ID # 09F070000271062

ZONING INFORMATION (TRACT A, C & D)

JURISDICTION: CITY OF FAIRBURN

MAXIMUM BUILDING HEIGHT: 48 FEET

NO BUILDINGS OBSERVED ON SITE.

NO PARKING SPACES OBSERVED ON SITE

THE UNDERGROUND UTILITIES SHOWN HEREON ARE BASED ON LOCATION OF MARKINGS PROVIDED BY:

GROUNDHAWK SUBTERRANEAN INTELLIGENCE 355 ONETA STREET, SUITE D200 ATHENS, GA. 30601 PHONE: 706-204-9516 ATTENTION: RYAN McCRANIE

THE UNDERGROUND UTILITIES (EXCEPT THE LOCATION OF EXISTING DRAINAGE SEWER, AND IRRIGATION UTILITIES AS WELL AS UNDERGROUND STORAGE TANKS) WERE LOCATED BY GROUNDHAWK SUBTERRANEAN INTELLIGENCE UTILIZING RADIO FREQUENCY TECHNIQUE AND IN ACCORDANCE TO LEVEL "B" UTILITY LOCATION CRITERIA. THIS TECHNIQUE IS CAPABLE OF LOCATING METALLIC UTILITIES AND TRACER WIRES. ANY NON- METALLIC UTILITIES (WITHOUT TRACER WIRE) ARE

THE SURVEYOR MAKES NO GUARANTEES THAT THE UNDERGROUND UTILITIES SHOWN COMPRISE ALL SUCH UTILITIES IN THE AREA, EITHER IN- SERVICE OR ABANDONED. UNDERGROUND UTILITIES NOT OBSERVED OR LOCATED UTILIZING THIS TECHNIQUE MAY EXIST ON THIS SITE BUT ARE NOT SHOWN, AND MAY BE FOUND UPON EXCAVATION, THE SURVEYOR FURTHER DOES NOT WARRANT THAT THE UNDERGROUND UTILITIES SHOWN ARE IN THE EXACT LOCATION INDICATED ALTHOUGH THE SURVEYOR DOES CERTIFY THAT THEY ARE LOCATED AS ACCURATELY AS POSSIBLE FROM INFORMATION AVAILABLE.

INFORMATION REGARDING MATERIAL AND SIZE OF UTILITIES IS BASED ON RECORDS ACQUIRED FROM THE UTILITY OWNERS.

HIS PLAT IS A RETRACEMENT OF AN EXISTING PARCEL OR PARCELS OF LAND AND DOES IOT SUBDIVIDE OR CREATE A NEW PARCEL OR MAKE ANY CHANGES TO ANY REAL ROPERTY BOUNDARIES. THE RECORDING INFORMATION OF THE DOCUMENTS, MAPS. PLATS, OR OTHER INSTRUMENTS WHICH CREATED THE PARCEL OR PARCELS ARE STATED HEREON. RECORDATION OF THIS PLAT DOES NOT IMPLY APPROVAL OF ANY LOCAL JURISDICTION, AVAILABILITY OF PERMITS, COMPLIANCE WITH LOCAL REGULATIONS OR REQUIREMENTS, OR SUITABILITY FOR ANY USE OR PURPOSE OF TH LAND. FURTHERMORE, THE UNDERSIGNED LAND SURVEYOR CERTIFIES THAT THIS PLA COMPLIES WITH THE MINIMUM TECHNICAL STANDARDS FOR PROPERTY SURVEYS IN GEORGIA AS SET FORTH IN THE RULES AND REGULATIONS OF THE GEORGIA BOARD O REGISTRATION FOR PROFESSIONAL ENGINEERS AND LAND SURVEYORS AND AS SET

TRACT A & D: PORTMAN RESIDENTIAL, LLC & IDELITY NATIONAL TITLE INSURANCE COMPANY TRACT C: 3 PATAS REAL ESTATE INVESTMENTS LLC &

THIS IS TO CERTIFY THAT THIS MAP OR SURVEY AND THE SURVEY ON WHICH IT IS BASED

SPECIAL NOTES BLOCK AND/OR CERTIFICATIONS. THE CERTIFICATIONS AND DECLARATIONS ON THIS PLAT ARE NOT TRANSFERABLE TO ADDITIONAL INSTITUTIONS OR SUBSEQUENT OWNER:

PURSUANT TO RULE 180-6.09 OF THE GEORGIA STATE BOARD OF REGISTRATION FOR PROFESSIONAL ENGINEERS AND SURVEYORS. THE TERM "CERTIFICATION" RELATING T STATEMENT BASED UPON FACTS AND KNOWLEDGE KNOWN TO THE REGISTRANT AND IS NOT A GUARANTEE OR WARRANTY, EITHER EXPRESSED OR IMPLIED

ADJOINING PREMISES UNLESS NOTED OR SHOWN HEREON.

THERE IS NO OBSERVED EVIDENCE OF CURRENT EARTH MOVING WORK, BUILDING

THERE IS NO OBSERVED EVIDENCE OF THE SITE BEING USED AS A SOLID WASTE

NO PROPOSED CHANGES IN STREET RIGHT-OF-WAY LINES WERE FOUND DURING

RECORDING CERTIFICATE

FORTH IN O.C.G.A. SECTION 15-6-67.

ALTA/NSPS CERTIFICATE

FIDELITY NATIONAL TITLE INSURANCE COMPANY

WERE MADE IN ACCORDANCE WITH THE 2021 MINIMUM STANDARD DETAIL REQUIREM! FOR ALTA / NSPS LAND TITLE SURVEYS, JOINTLY ESTABLISHED AND ADOPTED BY ALTA AND NSPS, AND INCLUDES ITEMS 1,2,3,4,5,6(a),6(b),7(a),7(b1),7(c),8,9,11,13,14,16,17 & 19 OF TABLE A THEREOF. THE FIELD WORK WAS COMPLETED ON JUNE 7, 2024. THE DATE OF THE SURVEY OR MAP IS JUNE 14, 2024.

SHEET NO. DRAWING# TM 24-133

. ACCORDING TO THE "FIRM" (FLOOD INSURANCE RATE MAP) OF FULTON COUNTY, GEORGIA (PANEL NUMBER 13121C0462F), DATED SEPTEMBER 18, 2013; NO PORTION OF THIS PROPERTY LIES WITHIN A SPECIAL FLOOD HAZARD AREA

ROUTE 74 AS SHOWN HEREON. III. AS OF THE DATE OF THIS SURVEY, TITLE TO SUBJECT PROPERTY APPEARS TO LIE VESTED IN WHITE BROOKWOOD LIMITED LIABILITY

COUNTY, GEORGIA IN DEED BOOK 28566, PAGE 114. IV. PROPERTY IS SUBJECT TO ALL EASEMENTS AND RIGHTS OF WAY,

VITHIS SURVEY WAS PREPARED WITH THE RENEET OF A CURRENT TITLE REPORT (COMMITMENT NO. 240859GA, EFFECTIVE DATE OF APRIL 15, 2024), PREPARED BY FIDELITY NATIONAL TITLE INSURANCE COMPANY, AND RECEIVED ON MAY 10, 2024, APPLICABLE ENCUMBRANCES AND SPECIAL EXCEPTIONS ARE SHOWN BELOW AND/OR ON THIS SURVEY.

BENCHMARK #1

BENCHMARK #2

TITLE NOTES - TRACT A & D

II. SUBJECT PROPERTY HAS DIRECT VEHICULAR ACCESS TO THE PUBLIC

IGHTS-OF-WAY OF MEADOW GLEN PARKWAY AND GEORGIA STATE

11. EASEMENT CONTAINED IN RIGHT-OF-WAY DEED, RECORDED IN DEED BOOK 10232, PAGE 260, AMONG THE LAND RECORDS OF FULTON COUNTY, GEORGIA (DOES NOT AFFECT SUBJECT PROPERTY, EASEMENT EXPIRED)

2. EASEMENT CONTAINED IN RIGHT-OF-WAY DEED, RECORDED IN DEED BOOK 9958, PAGE 405, AFORESAID RECORDS. AFFECTS SUBJECT PROPERTY AS TO 330' GEORGIA POWER COMPANY EASEMENT, WHICH IS THE ONLY LEGIBLE EASEMENT IN THE

13 FASEMENT CONTAINED IN RIGHT-OF-WAY DEED RECORDED IN DEED BOOK 9958, PAGE 409, AFORESAID RECORD (AFFECTS SUBJECT PROPERTY AS TO 330' GEORGIA POWER COMPANY EASEMENT, WHICH IS THE ONLY LEGIBLE EASEMENT IN THE DOCUMENT PROVIDED.)

4. EASEMENT FOR RIGHT-OF-WAY, RECORDED IN DEED BOOK 2500, (AFFECTS SUBJECT PROPERTY AS TO A PORTION OF THE 330' GEORGIA POWER COMPANY EASEMENT SHOWN ON SURVEY.) 15. EASEMENT FOR RIGHT-OF-WAY, RECORDED IN DEED BOOK 3276,

(AFFECTS SUBJECT PROPERTY AS TO A PORTION OF THE 330' GEORGIA

PAGE 114, AFORESAID RECORDS

(DOES NOT AFFECT SUBJECT PROPERTY)

POWER COMPANY EASEMENT SHOWN ON SURVEY.) 16 DECLARATION OF COVENANTS, CONDITIONS, RESTRICTIONS AND EASEMENTS, RECORDED IN DEED BOOK 31172, PAGE 38, AFORESAID RECORDS; AS AFFECTED BY CONFIRMATION OF EXPIRATION OF ORIGINAL DECLARATION AND FIRST AMENDMENT TO SECOND DECLARATION, RECORDED IN DEED BOOK 61896, PAGE 570, AFORESAID RECORDS

17. DECLARATION OF EASEMENTS, COVENANTS AND RESTRICTIONS, RECORDED IN DEED BOOK 55405, PAGE 147, AFORESAID RECORDS; RE-RECORDED IN DEED BOOK 55430, PAGE 657, AFORESAID RECORDS; AND AS RE-RECORDED IN DEED BOOK 56056, PAGE 448, AFORESAID (AFFECTS SUBJECT PROPERTY AS SHOWN ON SURVEY)

18. TEMPORARY GRADING EASEMENT, RECORDED IN DEED BOOK 55405, PAGE 171, AFORESAID RECORDS (DOES NOT AFFECT SUBJECT PROPERTY, EASEMENT EXPIRED)

RECORDED IN DEED BOOK 64843, PAGE 232, AFORESAID RECORDS. (AFFECTS SUBJECT PROPERTY, ACCESS EASEMENT SHOWN ON SURVEY.) 20. SEWER LINE EASEMENT, RECORDED IN DEED BOOK 64998, PAGE 129,

19. RECIPROCAL EASEMENT AND RESTRICTIVE COVENANT AGREEMENT,

(AFFECTS SUBJECT PROPERTY, SEWER EASEMENT SHOWN ON SURVEY.) RECIPROCAL EASEMENT AND RESTRICTIVE COVENANT AGREEMENT, ECORDED IN DEED BOOK 66309, PAGE 230, AFORESAID RECORDS. (AFFECTS SUBJECT PROPERTY AS TO ACCESS EASEMENT, NO PLOTTABLE MATTERS, SIGN EASEMENT LIES ON ADJACENT PROPERTY AND BENEFITS

22. DECLARATION OF EASEMENTS, COVENANTS AND RESTRICTIONS, RECORDED IN DEED BOOK 66509, PAGE 265, AFORESAID RECORDS. (AFFECTS SUBJECT PROPERTY, BLANKET IN NATURE)

SUBJECT PROPERTY, APPROXIMATE LOCATION SHOWN ON SURVEY.)

23. TEMPORARY DRIVEWAY EASEMENT, RECORDED IN DEED BOOK 66071 PAGE 298 AFORESAID RECORDS (AFFECTS SUBJECT PROPERTY, SHOWN ON SURVEY)

OBSERVED ON PLAT PROVIDED.)

24. SANITARY SEWER EASEMENT, UNDERGROUND COMMUNICATION AS SHOWN ON THAT PLAT RECORDED IN PLAT BOOK 446, PAGE 84, (SAID UTILITIES ARE SHOWN ON SURVEY. NO SANITARY SEWER EASEMENT

TITLE NOTES - TRACT C

. ACCORDING TO THE "FIRM" (FLOOD INSURANCE RATE MAP) OF FULTON COUNTY, GEORGIA (PANEL NUMBER 13121C0462F), DATED SEPTEMBER 18, 2013; NO PORTION OF THIS PROPERTY LIES WITHIN A SPECIAL FLOOD HAZARD AREA.

SUBJECT PROPERTY HAS ACCESS TO THE PUBLIC RIGHT-OF-WAY O GEORGIA STATE ROUTE 74. NO CURB CUTS OR EXISTING DRIVES

III. AS OF THE DATE OF THIS SURVEY, TITLE TO SUBJECT PROPERTY APPEARS TO LIE VESTED IN 3 PATAS REAL ESTATE INVESTMENTS LLC, PER DEED RECORDED AMONG THE LAND RECORDS OF FULTON COUNTY, GEORGIA IN DEED BOOK 66509, PAGE 274. IV. PROPERTY IS SUBJECT TO ALL EASEMENTS AND RIGHTS OF WAY,

RECORDED AND UNRECORDED /. THIS SURVEY WAS PREPARED WITH THE BENEFIT OF A CURRENT TITLE REPORT (COMMITMENT NO. 240858GA, EFFECTIVE DATE OF APRIL 15, 2024). PREPARED BY FIDELITY NATIONAL TITLE INSURANCE COMPANY, AND RECEIVED ON MAY 10, 2024. APPLICABLE ENCUMBRANCES AND SPECIAL EXCEPTIONS ARE SHOWN BELOW AND/OR ON THIS SURVEY.

1. EASEMENT CONTAINED IN RIGHT-OF-WAY DEED, RECORDED IN DEED BOOK 10232, PAGE 260, AMONG THE LAND RECORDS OF FULTON COUNTY GEORGIA (DOES NOT AFFECT SUBJECT PROPERTY, EASEMENT EXPIRED)

2. EASEMENT CONTAINED IN RIGHT-OF-WAY DEED, RECORDED IN DEED BOOK 9958, PAGE 405, AFORESAID RECORDS 330' GEORGIA POWER COMPANY EASEMENT DOES NOT AFFECT UBJECT PROPERTY. NO OTHER LEGIBLE ITEMS IN DOCUMENT

3 FASEMENT CONTAINED IN RIGHT-OF-WAY DEED RECORDED IN DEED BOOK 9958, PAGE 409, AFORESAID RECORDS 330' GEORGIA POWER COMPANY EASEMENT DOES NOT AFFECT SUBJECT PROPERTY. NO OTHER LEGIBLE ITEMS IN DOCUMENT

PAGE 378 AFORESAID RECORDS

(DOES NOT AFFECT SUBJECT PROPERTY) 15. EASEMENT FOR RIGHT-OF-WAY, RECORDED IN DEED BOOK 3276, PAGE 114, AFORESAID RECORDS. (DOES NOT AFFECT SUBJECT PROPERTY)

4. EASEMENT FOR RIGHT-OF-WAY, RECORDED IN DEED BOOK 2500,

6. DECLARATION OF COVENANTS, CONDITIONS, RESTRICTIONS AND EASEMENTS, RECORDED IN DEED BOOK 31172, PAGE 38, AFORESAID RECORDS: AS AFFECTED BY CONFIRMATION OF EXPIRATION OF ORIGINAL DECLARATION AND FIRST AMENDMENT TO SECOND DECLARATION, RECORDED IN DEED BOOK 61896, PAGE 570.

7. DECLARATION OF EASEMENTS, COVENANTS AND RESTRICTIONS RECORDED IN DEED BOOK 55405. PAGE 147. AFORESAID RECORDS: RE-RECORDED IN DEED BOOK 55430, PAGE 657, AFORESAID RECORDS AND AS RE-RECORDED IN DEED BOOK 56056, PAGE 448, AFORESAID

8. TEMPORARY GRADING EASEMENT, RECORDED IN DEED BOOK 55405 PAGE 171 AFORESAID RECORDS (DOES NOT AFFECT SUBJECT PROPERTY, EASEMENT EXPIRED)

9. RECIPROCAL EASEMENT AND RESTRICTIVE COVENANT AGREEMENT, ECORDED IN DEED BOOK 64843, PAGE 232, AFORESAID RECORDS. DOES NOT AFFECT SUBJECT PROPERTY, SHOWN ON SURVEY) 20. SEWER LINE EASEMENT, RECORDED IN DEED BOOK 64998, PAGE 129,

RECIPROCAL EASEMENT AND RESTRICTIVE COVENANT AGREEMENT. ECORDED IN DEED BOOK 66309, PAGE 230, AFORESAID RECORDS.

AFFECTS SUBJECT PROPERTY, BLANKET IN NATURE)

23. TEMPORARY DRIVEWAY EASEMENT, RECORDED IN DEED BOOK

AFFECTS SUBJECT PROPERTY, SHOWN ON SURVEY)

To find the Point of Beginning, commence at a capped rebar found "LSF #00538" at the

Fulton County, Georgia and being more particularly described as follows:

intersection of the Southerly Right-of-Way Line of Meadow Glen Parkway, (apparent 80 feet wide public right-of-way) and the Westerly Right-of-Way Line of Georgia State Route 74 (a.k.a. Senoia Road), (apparent variable width public right-of-way) as per GDOT Right-of-Way Plans - Project No. CSNHS-0007-00(841); thence, leaving said point and running with the said line of Meadow Glen Parkway, North 87° 39' 47" West, 234.40 feet; thence, 30.63 feet along the arc of a curve deflecting to the left, having a radius of 410.00 feet and a chord bearing and distance of North 89° 48' 13" West, 30.62 feet to a capped rebar found "LSF #00538", being the True Point of Beginning of the herein described tract or parcel of land; thence, leaving the said Point of Beginning and the said line of Meadow Glen Parkway and running

PROPERTY DESCRIPTION

(TRACT A)

All that tract or parcel of land lying and being in Land Lots 12 & 27, 9F District, City of Fairburn,

South 01° 57' 51" West, 503.16 feet; thence,

North 87° 39' 47" West, 45.99 feet; thence, South 01° 57' 51" West, 349.63 feet; thence,

74; thence, running with the said line of Georgia State Route 74 138.11 feet along the arc of a curve deflecting to the left, having a radius of 1,473.60 feet and a chord bearing and distance of South 08° 38' 43" East. 138.06 feet: thence. South 11° 19' 49" East, 325.77 feet to a 1/2 inch rebar found; thence,

South 78° 39' 15" West, 643,47 feet; thence North 06° 57' 23" East, 343.98 feet to a 1/2 inch rebar found inside of a 1 inch open top pipe;

0. North 00° 18' 11" East, 759.04 feet to a point on the aforesaid line of Meadow Glen Parkway; thence, running with the said line of Meadow Glen Parkway 1. 334.87 feet along the arc of a curve deflecting to the left, having a radius of 490.00 feet and

3. 264.15 feet along the arc of a curve deflecting to the right, having a radius of 410.00 feet and a chord bearing and distance of North 69° 35' 59" East, 259.60 feet to the Point of Beginning, containing 879,386 square feet or 20.1880 acres of land, more or less.

All that tract or parcel of land lying and being in Land Lot 12, 9F District, City of Fairburn, Fulton

the said line of Georgia State Route 74 South 01° 57' 51" West, 146.55 feet; thence, 2. 203.81 feet along the arc of a curve deflecting to the left, having a radius of 1,473.60 feet and a chord bearing and distance of South 01° 59' 53" East, 203.65 feet; thence, leaving

North 87° 39' 47" West, 325.07 feet; thence, . North 01° 57' 51" East, 349.63 feet; thence, 5. South 87° 39' 47" East, 311.00 feet to the Point of Beginning, containing 109,682 square

feet or 2.5179 acres of land, more or less.

roperty is subject to all easements and rights of way recorded and unrecorded.

(TRACT D) (DOES NOT AFFECT SUBJECT PROPERTY)

(DOES NOT AFFECT SUBJECT PROPERTY, SHOWN ON SURVEY)

2. DECLARATION OF EASEMENTS, COVENANTS AND RESTRICTIONS CORDED IN DEED BOOK 66509, PAGE 265, AFORESAID RECORDS.

DOES NOT AFFECT SUBJECT PROPERTY, SHOWN ON SURVEY) I. PERMANENT EASEMENT FOR THE CONSTRUCTION AND MAINTENANCE OF SLOPES AND UTILITIES, RECORDED IN DEED BOOK 66984, PAGE 372,

South 87° 39' 47" East, 325.07 feet to a point on the aforesaid line of Georgia State Route

North 89° 45' 39" West, 482.14 feet to a 1/2 inch rebar found; thence,

a chord bearing and distance of North 70° 43' 14" East, 328.39 feet; thence, North 51° 08' 34" East, 230,75 feet; thence.

Property is subject to all easements and rights of way recorded and unrecorded.

PROPERTY DESCRIPTION (TRACT C)

County, Georgia and being more particularly described as follows: To find the Point of Beginning, commence at a capped rebar found "LSF #00538" at the intersection of the Southerly Right-of-Way Line of Meadow Glen Parkway, (apparent 80 feet wide public right-of-way) and the Westerly Right-of-Way Line of Georgia State Route 74 (a.k.a. Senoia Road), (apparent variable width public right-of-way) as per GDOT Right-of-Way Plans - Project No. CSNHS-0007-00(841); thence, leaving said point and running with the said line of Georgia State Route 74, South 01° 57' 51" West, 504.30 feet to the True Point of Beginning of the herein described tract or parcel of land; thence, leaving the said Point of Beginning and continuing along

the aforesaid line of Georgia State Route 74 and running

(DOES NOT AFFECT SUBJECT PROPERTY)

AFORESAID RECORDS

DOES NOT AFFECT SUBJECT PROPERTY)

PROPERTY DESCRIPTION

All that tract or parcel of land lying and being in Land Lots 12 & 27, 9F District, City of Fairburn, Fulton County, Georgia and being more particularly described as follows:

of find the Point of Beginning, commence at a point at the intersection of the Northerly Right-of-Way Line of Meadow Glen Parkway, (apparent 80 feet wide public right-of-way) and the Westerly Right-of-Way Line of Georgia State Route 74 (a.k.a. Senoia Road), (apparent variable width public right-of-way) as per GDOT Right-of-Way Plans - Project No. CSNHS-0007-00(841); thence, eaving said point and running with the said line of Meadow Glen Parkway, South 87° 39' 28" West, 233.88; thence, 46.69 feet along the arc of a curve deflecting to the left, having a radius of 490.00 feet and a chord bearing and distance of South 89° 33' 47" West, 46.67 feet to the True Point of Beginning of the herein described tract or parcel of land; thence, leaving the said Point of Beginning and continuing along the said line of Meadow Glen Parkway

South 01° 58' 10" West, 200.44 feet to the Point of Beginning, containing 128,646 square

. 305.48 feet along the arc of a curve deflecting to the left, having a radius of 490.00 feet and a chord bearing and distance of South 68° 58' 26" West, 300.55 feet; thence, South 51° 13' 21" West, 212.63 feet; thence, leaving the aforesaid line of Meadow Glen Parkway and running

North 02° 20' 32" East, 456.65 feet; thence,

South 88° 01' 50" East, 434.79 feet; thence,

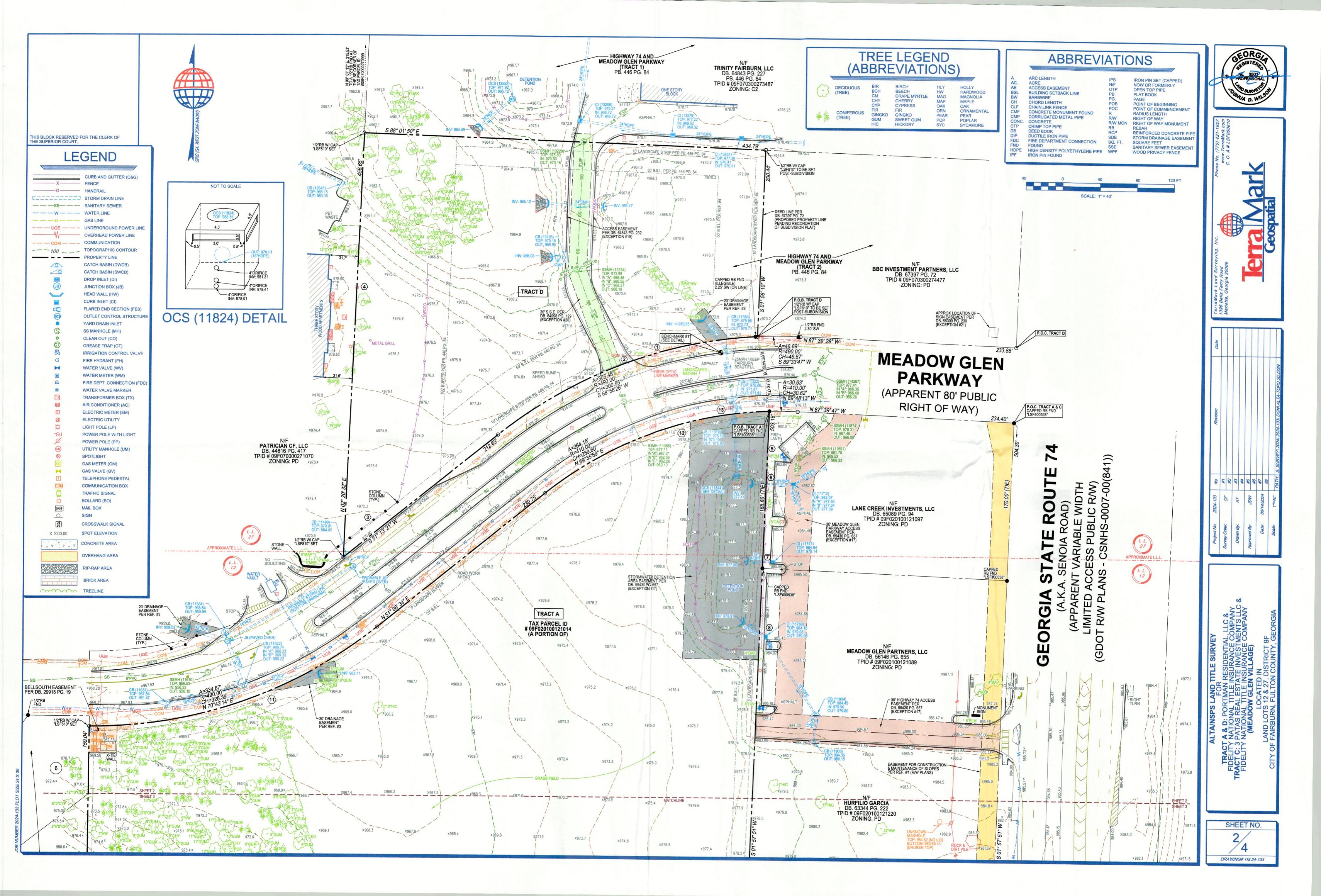
feet or 2,9533 acres of land, more or less.

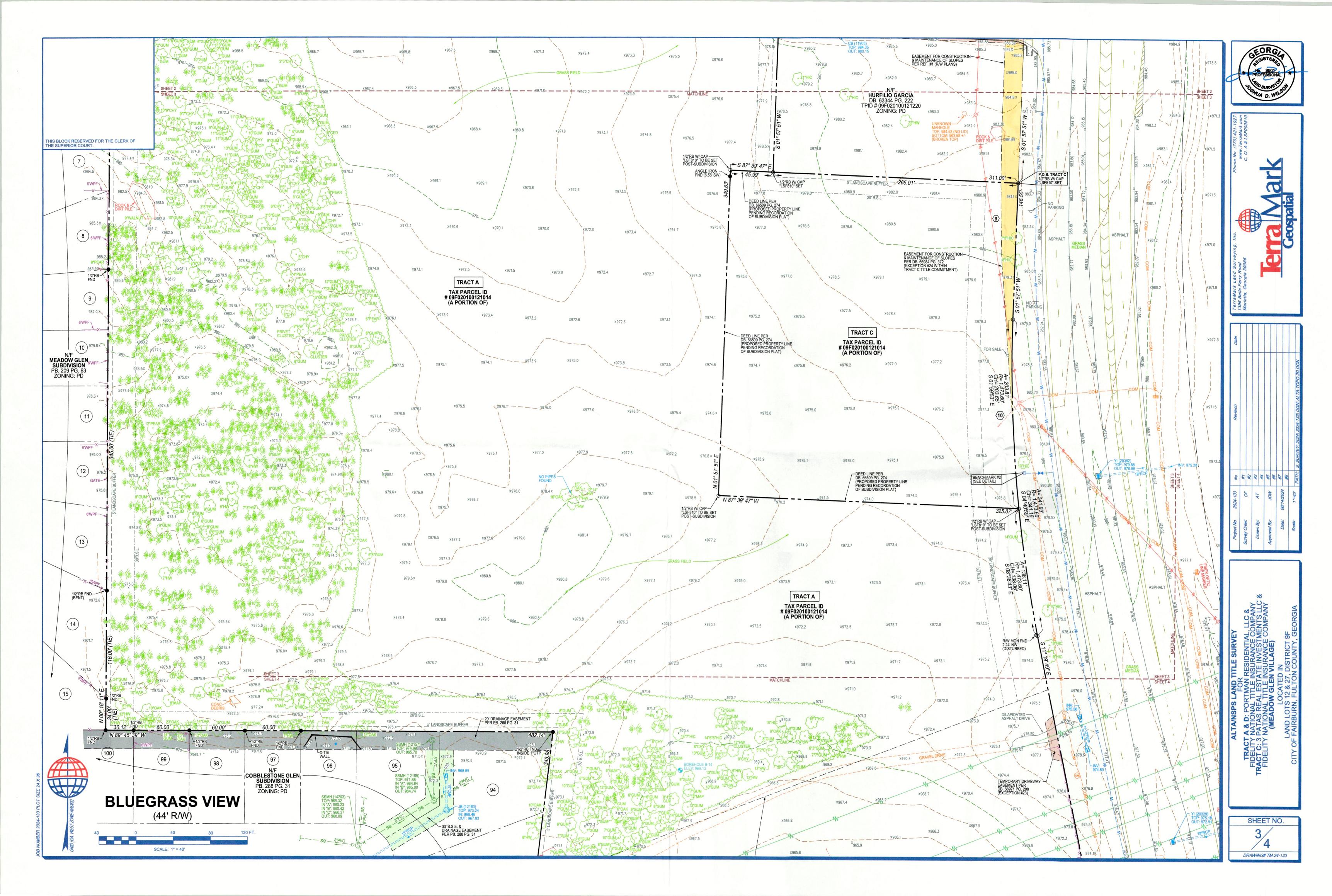
Property is subject to all easements and rights of way recorded and unrecorded.

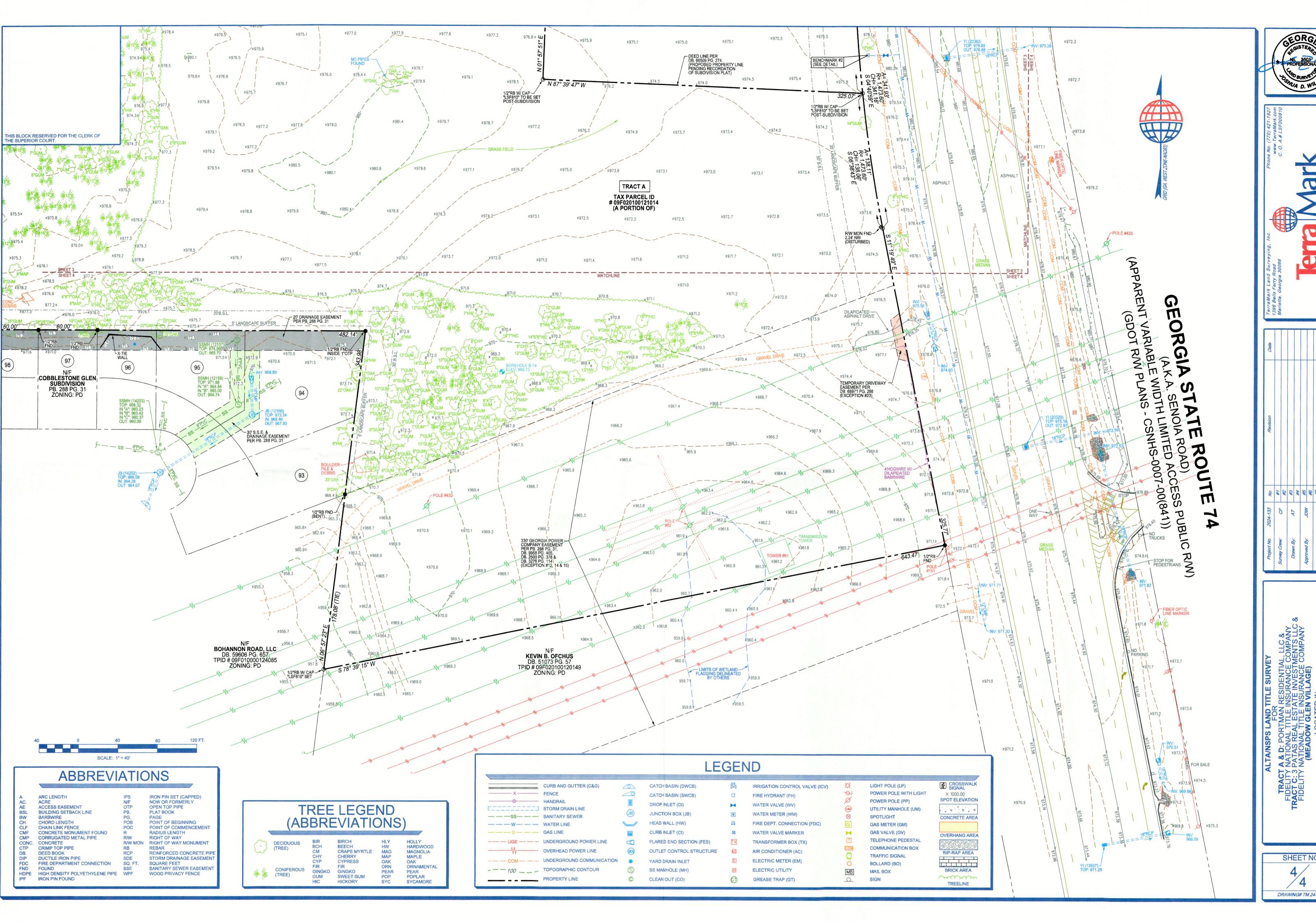
UTILITY PROVIDERS

ATLANTA GAS LIGHT CLAYTON 404-387-3164

COMMUNICATION COMCAST VERIZON BUSINESS NDWIDTH INFRASTRUCTURE


CITY OF ATLANTA


COWETA FAYETTE EMC 770-252-7448 CITY OF FAIRBURN 678-201-2541 GDOT (TRAFFIC) 404-635-2800 GREYSTONE POWER CORPORATION

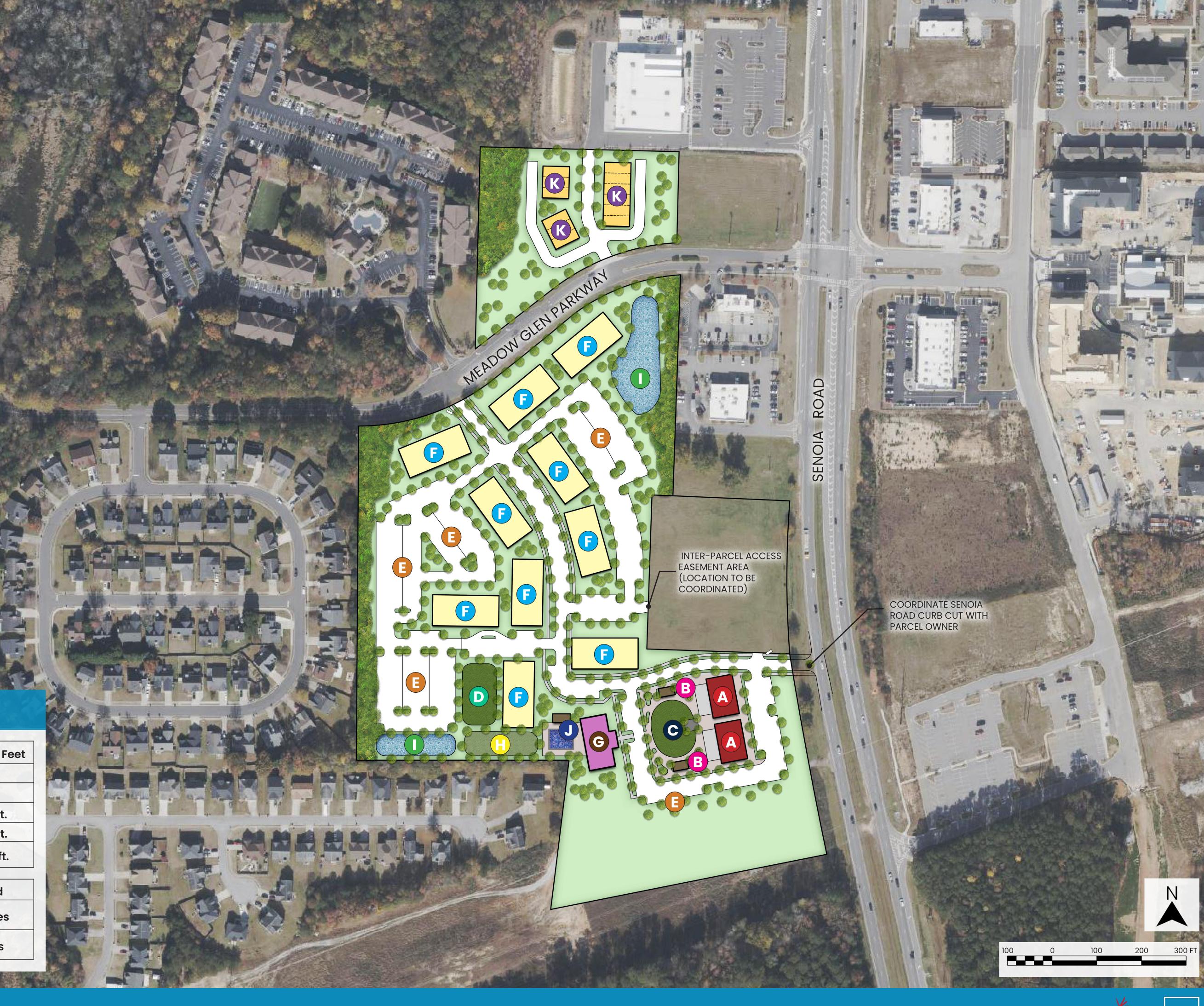

CITY OF FAIRBURN 470-367-3617 678-708-7112 800-624-9678 678-656-1062 GROUP GA, LLC ELECTRIC

404-546-3519

678-831-2444 SEWER **FULTON COUNTY** 404-612-0203

8 # # # # # # # #

SHEET NO. DRAWING# TM 24-133



- (A) COMMERCIAL
- **B** PAVILION
- © PUBLIC GREEN SPACE
- PRESIDENTIAL GREEN SPACE
- PARKING
- **MULTI-FAMILY**
- G CLUB/LEASING OFFICE
- RESIDENTIAL DOG PARK
- **STORMWATER DETENTION**
- J POOL
- K STACKED TOWNHOMES

LAND USE SUMMARY

Uses	Buildings	Units	Total Square Feet
Multi-Family	10	300	
Townhomes	12	24	
Commercial	2		9,800 sq.ft.
Club	1	-	4,000 sq.ft.
Grand Total	-	324	13,800 sq.ft.

Parking Summary	Required	Proposed
Multi-Family	1.5 per unit 450 Spaces	468 Spaces
Commercial	5/1000 49 Spaces	91 Spaces

troutman.com

Jessica L. Hill D 404.885.3925 jessica.hill@troutman.com

August 13, 2024

VIA EMAIL

City of Fairburn Department of Planning and Zoning Attn: Ms. Denise Brookins, Planning and Zoning Director

RE: Rezoning and Concurrent Variance Application for Meadow Glen Project on Fulton County Tax Parcel #09F020100121014 (a portion of) and Tax Parcel #09F070000271062 (collectively, the "Application")

Dear Denise:

Enclosed are the following revised items to amend the above captioned rezoning and concurrent variance application:

- Legal description reflecting a site area of 23.14 acres;
- Letter of intent;
- Impact analysis;
- Public participation plan report;
- Site plan;
- Color concept plan
- Traffic study; and
- Georgia law required appeal rights reservation.

The updated materials reflect a reduction in the site area to 23.14 acres, the addition of a third use to meet the PD district requirements, the deceleration lanes required and preliminary comments from Fairburn staff regarding traffic, water and sewer. Please amend the application with the enclosed materials.

Sincerely yours,

minh Holl

Jessica L. Hill

LEGAL DESCRIPTION

LEGAL DESCRIPTION

PROPERTY DESCRIPTION (TRACT A)

All that tract or parcel of land lying and being in Land Lots 12 & 27, 9F District, City of Fairburn, Fulton County, Georgia and being more particularly described as follows:

To find the Point of Beginning, commence at a capped rebar found "LSF #00538" at the intersection of the Southerly Right-of-Way Line of Meadow Glen Parkway, (apparent 80 feet wide public right-of-way) and the Westerly Right-of-Way Line of Georgia State Route 74 (a.k.a. Senoia Road), (apparent variable width public right-of-way) as per GDOT Right-of-Way Plans - Project No. CSNHS-0007-00(841); thence, leaving said point and running with the said line of Meadow Glen Parkway, North 87° 39' 47" West, 234.40 feet; thence, 30.63 feet along the arc of a curve deflecting to the left, having a radius of 410.00 feet and a chord bearing and distance of North 89° 48' 13" West, 30.62 feet to a capped rebar found "LSF #00538", being the True Point of Beginning of the herein described tract or parcel of land; thence, leaving the said Point of Beginning and the said line of Meadow Glen Parkway and running

- 1. South 01° 57' 51" West, 503.16 feet; thence,
- North 87° 39' 47" West, 45.99 feet; thence,
- South 01° 57' 51" West, 349.63 feet; thence,
- South 87° 39' 47" East, 325.07 feet to a point on the aforesaid line of Georgia State Route 74; thence, running with the said line of Georgia State Route 74
- 138.11 feet along the arc of a curve deflecting to the left, having a radius of 1,473.60 feet and a chord bearing and distance of South 08° 38' 43" East, 138.06 feet, thence,
- 6. South 11° 19' 49" East, 325.77 feet to a 1/2 inch rebar found; thence,
- 7. South 78° 39' 15" West, 643,47 feet; thence,
- North 06" 57' 23" East, 343.98 feet to a 1/2 inch rebar found inside of a 1 inch open top pipe; thence,
- 9. North 89° 45' 39" West, 482.14 feet to a 1/2 inch rebar found; thence,
- North 00° 18' 11" East, 759.04 feet to a point on the aforesaid line of Meadow Glen Parkway; thence, running with the said line of Meadow Glen Parkway
- 11. 334.87 feet along the arc of a curve deflecting to the left, having a radius of 490.00 feet and a chord bearing and distance of North 70° 43' 14" East, 328.39 feet; thence,
- 12. North 51° 08' 34" East, 230,75 feet; thence,
- 13. 264.15 feet along the arc of a curve deflecting to the right, having a radius of 410.00 feet and a chord bearing and distance of North 69° 35' 59" East, 259.60 feet to the Point of Beginning, containing 879,386 square feet or 20.1880 acres of land, more or less.

Property is subject to all easements and rights of way recorded and unrecorded.

LEGAL DESCRIPTION

PROPERTY DESCRIPTION (TRACT D)

All that tract or parcel of land lying and being in Land Lots 12 & 27, 9F District, City of Fairburn, Fulton County, Georgia and being more particularly described as follows:

To find the Point of Beginning, commence at a point at the intersection of the Northerly Right-of-Way Line of Meadow Glen Parkway, (apparent 80 feet wide public right-of-way) and the Westerly Right-of-Way Line of Georgia State Route 74 (a.k.a. Senoia Road), (apparent variable width public right-of-way) as per GDOT Right-of-Way Plans – Project No. CSNHS-0007-00(841); thence, leaving said point and running with the said line of Meadow Glen Parkway, South 87° 39' 28" West, 233.88; thence, 46.69 feet along the arc of a curve deflecting to the left, having a radius of 490.00 feet and a chord bearing and distance of South 89° 33' 47" West, 46.67 feet to the True Point of Beginning of the herein described tract or parcel of land; thence, leaving the said Point of Beginning and continuing along the said line of Meadow Glen Parkway

- 305.48 feet along the arc of a curve deflecting to the left, having a radius of 490.00 feet and a chord bearing and distance of South 68° 58' 26" West, 300.55 feet; thence,
- South 51° 13' 21" West, 212.63 feet; thence, leaving the aforesaid line of Meadow Glen Parkway and running
- 3. North 02° 20' 32" East, 456.65 feet; thence,
- 4. South 88° 01' 50" East, 434.79 feet; thence,
- South 01° 58' 10" West, 200.44 feet to the Point of Beginning, containing 128,646 square feet or 2.9533 acres of land, more or less.

Property is subject to all easements and rights of way recorded and unrecorded.

LETTER OF INTENT

REZONING APPLICATION [LETTER OF INTENT]

Dear City of Fairburn:

Portman Residential proposes a zoning amendment on an approximately 22-acre site located on the west side of Highway 74/Senoia Road and on the south side of Meadow Glen Parkway. The property is currently zoned PD as part of a larger project pursuant to Ordinance No. 98-07, adopted in 1998. A portion of the property zoned in the 1998 ordinance has been developed with residential uses, however, the subject property has remained undeveloped. In lieu of the commercial development proposed on the property in the 1998 ordinance, the current proposal is to develop a mixed-use community on this portion of the property including a maximum of 12,000 of retail, office, institutional and personal service use, and 364 multifamily units.

Listed below are the proposed development standards for the subject property:

- 1. The number of residential units on the property shall not exceed 20 units per acre or 364 units, whichever is less.
- 2. A maximum of 364 multifamily dwelling units shall be permitted.
- 3. A maximum of 12,000 square feet of nonresidential development shall be permitted. Nonresidential development shall be limited to the area with frontage on State Route 74.
- Automobile, boat and motorcycle dealers (new and/or used), automotive exhaust system repair shop, general automotive repair, automotive transmission repair shops and gasoline service stations shall be prohibited.
- 5. No minimum lot frontage shall be required.
- 6. The minimum heated floor area per residential unit shall be 600 square feet.
- 7. The number of three (3) bedroom multifamily units shall be limited to no more than ten percent (10%) of the total number of units.
- 8. The project shall include an amenity package for the residential units including a clubroom and pool.
- 9. Exterior materials on the residential units shall include a minimum of thirty percent (30%) brick or stone and forty percent (40%) stone or other cementitious materials. Vinyl siding and veneers are prohibited.
- 10. All roof mount equipment shall be screened from the public rights-of-way.
- 11. Each single family attached dwelling unit (townhome) shall include an individual garage.
- 12. A minimum of eight alternative fuel vehicle charging stations shall be provided on the property.
- 13. A deceleration lane on the northern boundary of Meadow Glen Parkway shall only be required if that portion of the property is improved with dwelling units.

Sincerely,

Marc Brambrut

m

IMPACT ANALYSIS

IMPACT ANALYSIS

Appl	icant:
Analı	ze the impact of the proposed rezoning and answer the following questions:
1.	Does the proposal permit a use that is suitable in view of the use and development of adjacent and nearby property?
2.	Does the proposal adversely affect the existing use or usability of adjacent or nearby property?
3.	Does the property have a reasonable economic use as currently zoned?
4.	Will the proposal result in a use that could cause an excessive or burdensome use of existing streets, transportation facilities, utilities or schools?
5.	Is the proposal in conformity with the policies and intent of the land use plan?
6.	Are there existing or changing conditions that affect the use and development of the property which support either approval or denial of the proposal?
7.	Does the proposal permit a use that can be considered environmentally adverse to the natural resources, environment and citizens of City of Fairburn?

Attach additional sheets as needed.

IMPACT ANALYSIS

Does the proposal permit a use that is suitable in view of the use and development of adjacent and nearby property?

The use and development of adjacent and nearby property is a mix of residential and commercial uses. Along highway 74 the uses are primarily commercial south of the I-85 intersection and include drive through, quick serve and sit down restaurants, gas stations, storage, a funeral home, a learning academy, retail and auto related uses. West of the property is a mix of single family dwellings and multifamily apartment homes. The proposal will add a mixed use development with multifamily dwellings and nonresidential uses including commercial, office and/or institutional use. The proposed use is consistent with the other existing uses located on adjacent and nearby properties.

Does the proposal adversely affect the existing use or usability of adjacent or nearby property?

The proposed development locates the more intense development with nonresidential use along the Highway 74 frontage and then provides residential use on the balance of the property. This orientation complements the other commercial uses along Highway 74, preserving the commercial character of that frontage. Further, the residential use proposed is situated in a way to provide a transition from the busy Highway 74 corridor to the residential uses west of the subject property. A landscape buffer is proposed between the property and the adjacent residential development to the west to further mitigate any potential impact. The proposal fits within the existing development fabric and will not adversely affect the existing use and usability of adjacent or nearby property.

Does the property have a reasonable economic use as currently zoned?

The vacant state of the property since the zoning approval in 1998 suggests the current zoning does not have a reasonable economic use or that the use is impaired. Changing the zoning entitlements from an all commercial development to a mixed use project will create a more economically viable project.

Will the proposal result in a use that could cause excessive or burdensome use of existing streets, transportation facilities, utilities or schools?

A traffic study conducted to assess the impact of the project determined the road network currently has excess vehicular capacity to accommodate the proposed development. A trip generation comparison was performed to compare the proposed mixed-use development with the all commercial development allowed by the current development. The proposed mixed-use development is much less intense than the by right option. The all commercial

by right plan will generate significantly more trips than the proposed plan in the AM peak hour, the PM peak hour and over a 24 hour period. No excessive or burdensome impact on existing streets or transportation facilities is expected.

All necessary utilities are currently available to the property. No adverse impact on the existing utilities is expected based on the project scope.

Allowing a residential use on the property will have some impact on schools but the impact is not expected to be burdensome. Multifamily use typically does not have many school aged children residents due to the dwelling unit sizes and development form. Further, the number of three-bedroom apartments in the development will be limited which will minimize the number of families interested in living in the project.

Is the proposal in conformity with the policies of the land use plan?

The City of Fairburn Future Land Use Map locates the property within in the Highway Mixed-Use District. The proposed development provides a mixture of retail, restaurants/cafes and multifamily housing, all of which are designated "appropriate land uses" under the land use plan in the Highway Mixed-Use District. Further, the proposal is consistent with other stated goals in the land use plan, particularly around Highway 74. Specifically:

- The proposal is consistent with community goals of building passive recreation park close to Highway 74
- The proposed development includes an opportunity for sit-down restaurants to be located along Highway 74. Outdoor restaurant patios are being provided with direct access to greenspace, providing patrons and their children the opportunity to play while waiting for a table or after dining.
- The project includes a commercial component along the Highway 74 frontage that provides goods and services to nearby residents and those utilizing the highway, creating a gateway to the city from the south.
- A live/work/play design is incorporated into the project.

Are there existing or changing conditions that affect the use of development of the property which support either approval or denial of the proposal?

The Highway 74 corridor is in a time of transition. The subject property has been vacant since the 1998 approval of the zoning allowing commercial use. In 2022, the City of Fairburn approved a rezoning immediately across Highway 74 from the property to rezone from C-2 to PD to allow 288 multifamily units and 4,000 square feet of retail and reduce required parking from two spaces per unit to 1.5 spaces per unit (Rezoning 2022045). The change in zoning requested will allow a complementary project to be developed across the street, creating a

cohesive development pattern in this bloc. The change from C-2 to a PD for a mixed use project immediately across the street creates a change in conditions supporting this proposal.

Does the proposal permit a use that can be considered environmentally adverse to the natural resources, environment and citizens of City of Fairburn?

No environmental features have been identified on the property. The development proposed is not expected to be environmentally adverse to the natural resources, environment and citizens of the City of Fairburn. The proposal adds to the residential and commercial uses that already exist in the area and complements the existing mix of uses in the development pattern in the broader area.

CONCURRENT VARIANCE RESPONSE

In accordance with Section 80-251, a concurrent variance is requested to reduce required parking from (i) 2.0 spaces per dwelling unit to 1.5 spaces per dwelling unit and (ii) to reduce required parking for restaurant use from 1 space per 100 square feet to 1 space per 150 square feet. Granting a variance requires a showing meeting one of the three following requirements: (1) relief, if granted, would be in harmony with, or, could be made to be in harmony with, the general purpose and intent of this chapter; or (2) the application of the particular provision of this chapter to a particular piece of property, due to extraordinary and exceptional conditions pertaining to that property because of its lot size, shape, or topography, would create an unnecessary hardship for the owner while causing no detriment to the public; or (3) conditions resulting from existing foliage or structures bring about a hardship whereby a sign meeting minimum letter size, square footage and height requirements cannot be read from an adjoining public road. This proposal meets the first criteria.

The zoning ordinance requires two parking spaces per dwelling unit, however, multifamily developments in this market and similar markets typically demand parking of 1.5 spaces or fewer per unit. Demonstrating this demand, a variance was granted in 2022 for the proposed multifamily residential use by South City Partners at 0 Renaissance Parkway, located immediately across the street from the property.

Similarly, the applicant proposes to have a mix of retail and restaurant uses and park them at 6 spaces per 1,000 square feet. This parking ratio is commensurate with other similar developments, such as 8030 Senoia Road located across the street and including 80 parking spaces for 13,200 square feet (i.e., 6 spaces per 1,000sf). Further 7794 Ella Lane contains 11,020 square feet and 57 parking spaces (i.e., 5 spaces per 1,000sf).

The requested reductions are consistent with market demands. The reductions would also reduce the amount of surface parking and paving included in the development, improving the visual aesthetic. The reduction proposed is in harmony with the general purpose and intent of the zoning ordinance and generally benefits the public good and welfare.

PUBLIC PARTICIPATION PLAN REPORT

PUBLIC PARTICIPATION PLAN REPORT

Аp	plicant: _	Portman Residential, LLC	Petition No.	
Da	ite:			
1. The following parties were notified of the requested rezoning/use permit:				
	Attached	is a list of the property owners notified	regarding the applications. Property owners within 1,000 feet of the	
	property w	were notified. Also attached is the notifi	cation letter providing the meeting details.	
2.	The follo	owing meetings were held regard	ding this petition: (Include the date, time, and meeting location.)	
	Virtua	al meetings were held using Microsoft To	eams on June 25, 2024 and July 23, 2024.	
3.	The follo	owing issues and concerns were	expressed:	
	Each me	eeting only had one attendee. At the Ju	une 25th meeting the attendee did not have any questions or concerns about	
	the proje	ect and was attending for information pu	urposes. At the July 23rd meeting, the attendee was a representative from Sou	ıth
	City Part	tners, the developer of the mixed use p	roject across the street. He did not have any issues or concerns.	
4.	The app	olicant's response to issues and c	oncerns was as follows:	
	N/A			

Attach additional sheets as needed.

5. Applicants are required to attach copies of sign-in sheets from meetings as well as meeting announcements, i.e., notices, flyers, letters, and any other documentation which supports the opportunity for public input.

ParcelID	Address	Owner	OwnerAddr1	OwnerAddr2
09F070000271070	900 MEADOW GLEN CIR	PATRICIAN CF LLC	8027 JEFFERSON HWY	BATON ROUGE LA 70809
09F020100120628	2024 MEADOW GLEN CIR	TAH 2017 2 BORROWER LLC	1508 BROOKHOLLOW DR	SANTA ANA CA 92705
09F020100121022	8335 SENOIA RD	AMSDELL STORAGE VENTURES 52 LLC	20445 EMERALD PARKWAY DR STE 220	CLEVELAND OH 44135
09F010000123665	8315 CHAMPION TRL	SMART MILLS MONICA	8315 CHAMPION TRL	FAIRBURN GA 30213
09F020100120354 09F020100120933	1016 MEADOW GLEN CIR 3024 MEADOW GLEN PASS	TORRES LUZ A CHAMPION BERNARD	1016 MEADOW GLEN CIR 3024 MEADOW GLEN PASS	FAIRBURN GA 30213 FAIRBURN GA 30213
09F020100120792	1005 MEADOW GLEN CIR	SMITH CHATTAM III & FRIESON LEONA L	1005 MEADOW GLEN CIR	FAIRBURN GA 30213
09F010000123970	5925 BLUEGRASS VIEW	ROTHERHAM TODD M & KIM Y	4764 SUNSHINE AVE	SANTA ROSA CA 95409
09F020100120859	1033 MEADOW GLEN CIR	BUTLER TRENECIA S	1033 MEADOW GLEN CIR	FAIRBURN GA 30213
09F070300320304	7940 SENOIA RD	WADE PROPERTIES LLC	7490 CLUBHOUSE RD	BOULDER CO 80301
09F070300260450	0 SENOIA RD	BISHOP KAMMERER LLC	7475 ROSWELL RD	ATLANTA GA 30328
09F020100120438	1048 MEADOW GLEN CIR	LEWIS EDWARD L & CATHERINE	1048 MEADOW GLEN CIR	FAIRBURN GA 30213
09F010000124085 09F020200130063	0 CHAMPION TRL 0 MILAM RD SUITE 100	BOHANNON ROAD LLC FAIRBURN SHOPS LLC	P O BOX 420367 131 GULF BRIDGE LN NW	ATLANTA GA 30342 SUNNYSIDE FL 32461
09F020100120966	3012 MEADOW GLEN PASS	WILLIAMS TERETTA	3012 MEADOW GLEN PASS	FAIRBURN GA 30213
09F020100120735	3025 MEADOW GLEN PASS	RAMIREZ ALEX & RADOLFO A	3025 MEADOW GLEN PASS	FAIRBURN GA 30213
09F020100120651	2036 MEADOW GLEN CIR	VELEZ GLORIA A	2036 MEADOW GLEN CIR	FAIRBURN GA 30213
09F070000260628	0 SENOIA RD	DEVELOPMENT AUTHORITY OF FULTON COUNTY	3715 NORTHSIDE PKY STE I-310	ATLANTA GA 30327
09F020100120594	2012 MEADOW GLEN CIR	V E PROPERTIES LLC	378 EBENEZER CHURCH RD	FAYETTEVILLE GA 30215-5208
09F010000123772 09F010000123830	5904 BLUEGRASS VIEW 5872 BLUEGRASS VIEW	2018 1 IH BORROWER LP BOYD MIA	1717 MAIN ST STE 2000 5872 BLUEGRASS VW	KENSAL ND 58455-0607 FAIRBURN GA 30213
09F020100120545	1092 MEADOW GLEN CIR	2018 4 IH BORROWER LP	1717 MAIN ST STE 2000	DALLAS TX 75201
09F010000123632	8303 CHAMPION TRL	KOROMA ABU BAKARR KOROMA CYNTHIA	8303 CHAMPION TRL	FAIRBURN GA 30213
09F010000123863	5881 BLUEGRASS VIEW	SFR JV 2 PROPERTY LLC	PO BOX 15087	SANTA ANA CA 92735
09F010000114094	0 TROTTERS CIR	BOHANNON ROAD LLC	P O BOX 420367	ATLANTA GA 30342
09F020100120461	1060 MEADOW GLEN CIR	CHAPPELL PEARL & DORIS	1060 MEADOW GLEN CIR	FAIRBURN GA 30213
09F020100120321	1004 MEADOW GLEN CIR	RAMDULAR NEIL & REBECCA CARTER DELLA	1004 MEADOW GLEN CIR	FAIRBURN GA 30213
09F020100120826 09F020100121014	1017 MEADOW GLEN CIR 0 MEADOW GLEN CIR	WHITE BROOKWOOD LLC	1017 MEADOW GLEN CIR 450 ROCKWELL CHURCH RD NE	FAIRBURN GA 30213 WINDER GA 30680
09F020100121014	0 SENOIA RD	CITY OF FAIRBURN GEORGIA	56 MALONE ST	FAIRBURN GA 30213
09F070300270343	7920 SENOIA RD	AB STAR PROPERTY LLC	5295 LAKE BEACH DR	DOUGLASVILLE GA 30135
09F010000123749	120 BELMONT TER	TOLSTOY GA LLC	853 BROADWAY FLOOR 5TH	NEW YORK NY 10033
09F010000124002	5937 BLUEGRASS VIEW	WYNN LISA M	5937 BLUEGRASS VIEW	FAIRBURN GA 30213
09F020100120768	1073 MEADOW GLEN CIR	ARVM 5 LLC	5001 PLAZA ON THE LAKE SUITE 200	AUSTIN TX 78746
09F010000124051	8318 CHAMPION TRL	NGUYEN DAVID & TRAN LOAN T	8318 CHAMPION TRL	FAIRBURN GA 30213
09F070000270973 09F020100120149	7995 SENOIA RD 0 SENOIA RD	MERCHANT CENTERS LLC & GUTHRIE RAVIN DEVELOPMENT LLC OFCHUS KEVIN B OFCHUS SONYA D	P O BOX 599 1820 PEACHTREE ST NE #903	FAYETTEVILLE GA 30214-0599 ATLANTA GA 30309
09F070300260427	8022 SENOIA RD	BARBARA G BROWN INVESTMENTS LLC ET AL	201 ALLEN RD # 300	ATLANTA GA 30328
09F020100120560	2000 MEADOW GLEN CIR	LUXOR SFR SPV 1 LLC	1114 AVENUE OF THE AMERICAS FLOOR 28TH	NEW YORK NY 10036
09F070300270368	7935 SENOIA RD	FAIRBURN 85 STORAGE LLC	3715 NORTHSIDE PKWY BLDG/STE 400 100	ATLANTA GA 30327
09F010000123806	5892 BLUEGRASS VIEW	HODGES JANESSA	5892 BLUEGRASS VIEW	FAIRBURN GA 30213
09F020100121006	0 SENOIA RD	PARROTT TIMOTHY H & MARSHA	339 TRICKUM CREEK RD	TYRONE GA 30290-9705
09F020100120495	1072 MEADOW GLEN CIR	ROE DOROTHY J & BEATTY CHERAMIE	5 RAINBOW LN	AMITYVILLE NY 11701
09F010000123897 09F010000123954	5893 BLUEGRASS VIEW 5917 BLUEGRASS VIEW	JONES ANTHONY & JONES RHONDA ALICIA MC CAIN ARLICIA N	5893 BLUEGRASS VIEW 5917 BLUEGRASS VIEW	FAIRBURN GA 30213 FAIRBURN GA 30213
09F020100120917	1057 MEADOW GLEN CIR	EDWARDS BATISA	1057 MEADOW GLEN CIR	FAIRBURN GA 30213
09F070000279958	7975 SENOIA RD	875 WOODSTOCK LLC	2145 DULUTH HWY STE A	DULUTH GA 30097
09F010000123756	5912 BLUEGRASS VIEW	CALDERON MAIRA ARELY NOLASCO & NOLASCO NELSON A LINARES	5912 BLUEGRASS VW	FAIRBURN GA 30213
09F010000124010	5941 BLUEGRASS VIEW	HAUGHTON RACQUEL R	5941 BLUEGRASS VW	FAIRBURN GA 30213
09F020100120412	1040 MEADOW GLEN CIR	WARE CHRISTINE	1040 MEADOW GLEN CIR	FAIRBURN GA 30213
09F020100120776	1077 MEADOW GLEN CIR	YAMASA CO LTD	P O BOX 4090	SCOTTSDALE AZ 85261
09F020100120719 09F010000124069	3017 MEADOW GLEN PASS 8314 CHAMPION TRL	HAWKINS AUGUSTUS SR & BRENDA DANCER ERIC A	3017 MEADOW GLEN PASS 8314 CHAMPION TRL	FAIRBURN GA 30213 FAIRBURN GA 30213
09F020100120941	3020 MEADOW GLEN CIR	FKH SFR C1 LP	1850 PARKWAY PL STE 900	MARIETTA GA 30067
09F010000123699	105 BELMONT TER	FELDER JEREMY	105 BELMONT TER	FAIRBURN GA 30213
09F010000123814	5888 BLUEGRASS VIEW	SFR ASSETS OWNER LLC	8300 N MOPAC EXPRESSWAY STE 200	AUSTIN TX 78759
09F020100120578	2004 MEADOW GLEN CIR	BHOWMICK VIKASH	2004 MEADOW GLEN CIR	FAIRBURN GA 30213
09F020100120529	1084 MEADOW GLEN CIR	SPRINGER CORBIN & DENNIS	1084 MEADOW GLN	FAIRBURN GA 30213
09F020200132937	0 SENOIA RD	MILAM VILLAGE LLC	136 HOOD ST STE C	MCDONOUGH GA 30253
09F020100121105 09F070300270483	8100 SENOIA RD 8040 SENOIA RD UNIT 1B	CITY OF FAIRBURN GEORGIA CLG FAIRBURN LLC	56 MALONE ST 1369 MONROE DR	FAIRBURN GA 30213 MONROE GA 30655
09F010000114185	0 MEADOW GLEN WAY	KNIGHT GROUP THE	9497 THORNTON BLVD	JONESBORO GA 30236
09F010000124036	5949 BLUEGRASS VIEW	BAIER APRIL	5949 BLUEGRASS VIEW	FAIRBURN GA 30213
09F020100120800	1009 MEADOW GLEN CIR	SFR XII ATL OWNER 6 L P	9200 E HAMPTON DR	CAPITAL HEIGHTS MD 20743
09F020100121097	8045 MEADOW GLEN CIR	LANE CREEK INVESTMENTS LLC	1280 SNOWS MILL RD	BOGART GA 30622
09F010000123988	5929 BLUEGRASS VIEW	PROGRESS RESIDENTIAL BORROWER 3 LLC	P O BOX 4090	SCOTTSDALE AZ 85261
09F010000123905	5897 BLUEGRASS VIEW 1045 MEADOW GLEN CIR	WASHINGTON BLAIR	5897 BLUEGRASS VIEW	FAIRBURN GA 30213
09F020100120883 09F020100120743	3029 MEADOW GLEN CIR	DIVVY HOMES WAREHOUSE II LLC BANKS MONIQUE & DASHAWN	530 HOWARD ST STE 100 3029 MEADOW GLEN PASS	SAN FRANCISCO CA 94105 FAIRBURN GA 30213
09F010000123723	135 BELMONT TER	GRACE RAYMOND L	135 BELMONT TER	FAIRBURN GA 30213
09F020100120388	1028 MEADOW GLEN CIR	GIBSON VICKIE	1028 MEADOW GLEN CIR	FAIRBURN GA 30213-4236
09F020100120974	3008 MEADOW GLEN CIR	BARNETT CHANTELL M	3008 MEADOW GLEN CIR	FAIRBURN GA 30213
09F020100120685	3005 MEADOW GLEN PASS	YAMASA CO LTD	P O BOX 4090	SCOTTSDALE AZ 85261
09F020100120446	1052 MEADOW GLEN CIR	SWANN BERTHA M	1052 MEADOW GLEN CIR	FAIRBURN GA 30213
09F010000123780 09F020100121089	5900 BLUEGRASS VIEW 8055 MEADOW GLEN CIR	HOUSTON SHAQUONZA & HOUSTON WAYNE ANTHONY MEADOW GLEN PARTNERS LLC	5900 BLUEGRASS VW 1931 STRADELLA RD	FAIRBURN GA 30213 LOS ANGELES CA 90077
09F020100121089	2016 MEADOW GLEN CIR	PACE CHRISTOPHER	2016 MEADOW GLEN CIR	FAIRBURN GA 30213-3136
09F010000123871	5885 BLUEGRASS VIEW	OPENDOOR PROPERTY TRUST I	5885 BLUEGRASS VW	FAIRBURN GA 30213
09F020100121212	8040 SENOIA RD UNIT 4B-2	FAIRBURN COMMONS LLC	3350 RIVERWOOD PKWY STE 450	ATLANTA GA 30339
09F010000123640	8307 CHAMPION TRL	WAQUOI PATIENCE	8307 CHAMPION TRL	FAIRBURN GA 30213
09F020100120479	1064 MEADOW GLEN CIR	EVANS CASSANDRA	1064 MEADOW GLEN CIR	FAIRBURN GA 30213
09F020100121154	8335 SENOIA RD	AMSDELL STORAGE VENTURES 52 LLC	20445 EMERALD PARKWAY DR STE 220	CLEVELAND OH 44135
09F010000124044	8322 CHAMPION TRL	FKH SFR C1 LP	1850 PARKWAY PL STE 900 1008 MEADOW GLEN CIR	MARIETTA GA 30067
09F020100120339 09F020100120891	1008 MEADOW GLEN CIR 1049 MEADOW GLEN CIR	SHARPE WILLIAM T ARMOUR WILLIE	1008 MEADOW GLEN CIR 1049 MEADOW GLEN CIR	FAIRBURN GA 30213 FAIRBURN GA 30213
09F020100120834	1025 MEADOW GLEN CIR	BRIDGES CASSANDRA J	1025 MEADOW GLEN CIR	FAIRBURN GA 30213
09F010000123921	5905 BLUEGRASS VIEW	SWINGER CHERYL B	5905 BLUEGRASS VIEW	FAIRBURN GA 30213
09F020100120750	1069 MEADOW GLEN CIR	IH4 PROPERTY GEORGIA LP	950 NORTHPOINT PKWY	ALPHARETTA GA 30005
09F010000123731	130 BELMONT TER	SRMZ 3 LLC	5001 PLAZA ON THE LK STE 200	AUSTIN TX 78746
09F010000123996	5933 BLUEGRASS VIEW	JORDAN SHIRL	5933 BLUEGRASS VIEW	FAIRBURN GA 30213
09F020100120396 09F020100120693	1032 MEADOW GLEN CIR 3009 MEADOW GLEN PASS	PORTER RASCHELLE TREJO JOSE R	1032 MEADOW GLEN CIR 3009 MEADOW GLEN PASS	FAIRBURN GA 30213 FAIRBURN GA 30213
09F020100120693	1096 MEADOW GLEN PASS	TLG HOLDINGS LLC	P O BOX 596	SHARPSBURG GA 30277

09F070300260419	8000 SENOIA RD	IH KRYSTAL FAIRBURN LLC	201 ALLEN RD STE 300
09F020100120503	1076 MEADOW GLEN CIR	HOSEA CELICE	1076 MEADOW GLEN CIR
09F020100120867	1037 MEADOW GLEN CIR	HERNANDEZ SARA	1037 MEADOW GLEN CIR
09F070300270236	0 SENOIA RD	CMSGS INVESTMENTS LLC	3890 REDWINE RD SW STE 210
09F020100120636	2028 MEADOW GLEN CIR	SUTPHIN ANTHONY J	796 SACCO PL
09F070300270350	7925 SENOIA RD	WASH ME FAST FAIRBURN LLC	6320 HIGHWAY 5
09F020100120289	5796 LANDRUM RD	BULLOCK GEORGE F SR & BARBARA	5796 LANDRUM RD
09F010000123913	5901 BLUEGRASS VIEW	FKH SFR C1 LP	1850 PARKWAY PL STE 900
09F020100121162	0 SENOIA RD	PARROTT TIMOTHY H & MARSHA	339 TRICKUM CREEK RD
09F010000123673	8319 CHAMPION TRL	MC CORD ROMON	8319 CHAMPION TRL
09F020100120925	3028 MEADOW GLEN PASS	GARCIA SERGIO & CARMEN HERMOSILLO	3028 MEADOW GLEN PASS
09F010000123962	5921 BLUEGRASS VIEW	LUXOR SFR SPV 1 LLC	1114 AVENUE OF THE AMERICAS FLOOR 29TH
09F020100121220	0 MEADOW GLEN CIR	GARCIA HURFILIO GARCIA	726 SOUTH FAIRFIELD DR
09F010000123764	5908 BLUEGRASS VIEW	RH PARTNERS OWNERCO LLC	5001 PLAZA ON THE LK STE 200
09F020100120420	1044 MEADOW GLEN CIR	MARTINEZ ABEL	1044 MEADOW GLEN CIR
09F010000124077	8306 CHAMPION TRL	DESRAVINES MACKLEEN & SPARKMAN DORYAN A	8310 CHAMPION TRL
09F020100120958	3016 MEADOW GLEN PASS	ASHMON BAXTER	3016 MEADOW GLEN DR
09F070000271062	0 MEADOW GLEN CIR	WHITE BROOKWOOD LIMITED LIABILITY CO	450 ROCKWELL CHURCH RD NE
09F020100120362	1020 MEADOW GLEN CIR	RAMCHARAN MICHAEL & ANNIE	1020 MEADOW GLEN CIR
09F020100120727	3021 MEADOW GLEN PASS	YENGLE MARIA I	3021 MEADOW GLENN PASS
09F010000123707	115 BELMONT TER	ASSOCIATED PARTNERS LLC	3418 DEER LANE DR
09F020100120669	2040 MEADOW GLEN CIR	SMITH PHYLLIS M	2040 MEADOW GLEN CIR
09F020100120537	1088 MEADOW GLEN CIR	ELDER LARRY & KIMBERLY	1088 MEADOW GLEN CIR
09F010000123848	5873 BLUEGRASS VIEW	STROZIER ANTHERY W	5873 BLUEGRASS VIEW
09F070300260443	0 SENOIA RD	BISHOP KAMMERER II LLC	7475 ROSWELL RD
09F070300260476	8040 SENOIA RD UNIT 1A	DEVELOPMENT AUTHORITY OF FULTON COUNTY	3715 NORTHSIDE PKY STE I-310
09F020100120511	1080 MEADOW GLEN CIR	SMITH TJUANA TAVARES	1080 MEADOW GLEN CIR
09F020100120875	1041 MEADOW GLEN CIR	JOHNSON MAURICE	1041 MEADOW GLEN CIR
09F020100120644	2032 MEADOW GLEN CIR	DENHAM SHANNON A	2032 MEADOW GLEN CIR
09F010000123855	5877 BLUEGRASS VIEW	MILLS MELISSA L	5877 BLUEGRASS VIEW
09F020100120313	1000 MEADOW GLEN CIR	PAREDES LUSI G & CHICAS HECTOR M	1000 MEADOW GLEN CIR
09F070000270999	7915 SENOIA RD	PEACHTREE LANDING GARDENS LP	999 WATERSIDE DR STE 2300
09F010000123681	8323 CHAMPION TRL	ALTO ASSET COMPANY 1 LLC	5001 PLAZA ON THE LK STE 200
09F010000123947	5913 BLUEGRASS VIEW	GEMES KATRINA A	5913 BLUEGRASS VW
09F020100120818	1013 MEADOW GLEN CIR	LESLIE JAMES	P.O. BOX 592
09F020100120982	3004 MEADOW GLEN PASS	COLFIN AI GA 1 LLC	8665 E HARTFORD DR STE 200
09F070300273487	3004 WEADOW GEEN 1 A33	COLINATORIEC	6003 ETIAKTI OKO DIKSTE 200
09F020100120370	1024 MEADOW GLEN CIR	2014 2 IH BORROWER L P	901 MAIN ST STE 4700
09F070000279982	7995 SENOIA RD	CBOCS	307 HARTMANN DR
09F010000123715	125 BELMONT TER	ROUNDTREE ALCANA A	125 BELMONT TER
09F020100120677	1021 MEADOW GLEN CIR	CAMERON DELABIA L	1021 MEADOW GLEN CIR
09F070300260435	0 SENOIA RD	GARCIA MARICELA GARCIA	726 S FAIRFIELD DR
09F020100120610	2020 MEADOW GLEN CIR	PLEHN NHORA M	145 EDMONDSON WAY
09F020100121204	8040 SENOIA RD UNIT 4B-1	OCP FAIRBURN LLC	1922 PROFESSIONAL CIR STE 100
09F010000123798	5896 BLUEGRASS VIEW	BROWN KEISHA T	5896 BLUEGRASS VIEW
09F020100121048	0 LANDRUM RD	AMSDELL STORAGE VENTURES 52 LLC	20445 EMERALD PARKWAY DR STE 220
09F010000123889	5889 BLUEGRASS VIEW	MC CARTHNEY MACK & MARGARET	5889 BLUEGRASS VIEW
09F020100120487	1068 MEADOW GLEN CIR	PROGRESS RESIDENTIAL BORROWER 11 LLC	P O BOX 4090
09F010000123657	8311 CHAMPION TRL	US SFE ASSET COMPANY 2 LLC	8300 N MOPAC EXPRESSWAY # 200
09F020100121113	8140 SENOIA RD	CITY OF FAIRBURN GEORGIA	56 MALONE ST
09F020100121113	1012 MEADOW GLEN CIR	COLON VIVIAN	1012 MEADOW GLEN CIR
09F020100120909	1053 MEADOW GLEN CIR	PORTER BERYL RODERICK	1053 MEADOW GLEN CIR
09F020100120784	1001 MEADOW GLEN CIR	MAYS CAANDI G	1001 MEADOWS GLEN CIR
09F070000279974	O SENOIA RD	875 WOODSTOCK LLC	2145 A DULUTH HIGHWAY 120
09F010000123939	5909 BLUEGRASS VIEW	FRANCOIS MICHELLE	5909 BLUEGRASS VW
09F020100120842	1029 MEADOW GLEN CIR	QUARLES JAMES H & JOYCE	1029 MEADOW GLEN CIR
09F020100120842	1036 MEADOW GLEN CIR	HOME SFR BORROWER II LLC	1110 STRAND ST STE 2A
09F01000120404	5945 BLUEGRASS VIEW	PROGRESS RESIDENTIAL BORROWER 17 LLC	PO BOX 4090
09F020200130436	5650 MILAM RD	FAIRBURN SHOPS LLC	131 GULF BRIDGE LN
09F020200130436			3013 MEADOW GLEN PASS
09F020100120701	3013 MEADOW GLEN PASS 1056 MEADOW GLEN CIR	ELLIS JACQUELINE STEPHENS CALVIN A	1056 MEADOW GLEN PASS
09F01000120433	5884 BLUEGRASS VIEW	LOCKETT SHERRY L & WHITTIE	5884 BLUEGRASS VIEW
09F020100120586	2008 MEADOW GLEN CIR	WILLIAMS MAI LAN	2008 MEADOW GLEN CIR
55. 020100120380	2000 WILADOW GLEN CIN	THE WAS AND USIN	ZOOD WILADOW GLEN CIT

ATLANTA GA 30328 FAIRBURN GA 30213 FAIRBURN GA 30213 ATLANTA GA 30331 BELLMORE NY 11710 DOUGLASVILLE GA 30135 FAIRBURN GA 30213-2812 MARIETTA GA 30067 TYRONE GA 30290-9705 FAIRBURN GA 30213 FAIRBURN GA 30213 NEW YORK NY 10036 PEACHTREE CITY GA 30269 AUSTIN TX 78746 FAIRBURN GA 30213 FAIRBURN GA 30213 FAIRBURN GA 30213 WINDER GA 30680 FAIRBURN GA 30213 FAIRBURN GA 30213 TALLAHASSEE FL 32312 FAIRBURN GA 30213 FAIRBURN GA 30213 FAIRBURN GA 30213 ATLANTA GA 30328 ATLANTA GA 30327 FAIRBURN GA 30213 NORFOLK VA 23510 AUSTIN TX 78746 FAIRBURN GA 30213 TYRONE GA 30290 SCOTTSDALE AZ 85255 DALLAS TX 75202 LEBANON TN 37087 FAIRBURN GA 30213 FAIRBURN GA 30213 PEACHTREE CITY GA 30269 FAYETTEVILLE GA 30214 AUBURN AL 36830 FAIRBURN GA 30213 CLEVELAND OH 44135 FAIRBURN GA 30213 SCOTTSDALE AZ 85261 AUSTIN TX 78759 FAIRBURN GA 30213 FAIRBURN GA 30213 FAIRBURN GA 30213 FAIRBURN GA 30213 DULUTH GA 30097-4007 FAIRBURN GA 30213 FAIRBURN GA 30313 CHRISTIANSTED 00820 SCOTTSDALE AZ 85261 SUNNYSIDE FL 32461 FAIRBURN GA 30213 FAIRBURN GA 30213 FAIRBURN GA 30213 FAIRBURN GA 30213

303 Peachtree Center Ave NE Suite 575 Atlanta, Georgia 30303 404. 614. 5252

June 5, 2024

VIA US MAIL

NOTICE TO INTERESTED PARTIES OF REZONING COMMUNITY MEETING

Date: Tuesday, June 25th at 6:00 p.m. and Tuesday, July 23rd at 6:00 p.m.

Location: Virtual Community Meetings (details provided below)

Petitioner: Portman Residential

Dear Fairburn Neighbor:

Portman Residential (the "Petitioner") proposes a zoning amendment on an approximately 25-acre site located on the west side of Highway 74/Senoia Road and on the southern and northern side of Meadow Glen Parkway. The Petitioner is requesting a zoning amendment from the existing PD zoning district to accommodate its development plans for a mixed-use community comprising of retail, multifamily, and townhomes. A property map is included for your reference.

In accordance with the Public Participation Program requirements in the City of Fairburn Zoning Ordinance, the Petitioner will hold Official Community Meetings prior to the Public Hearing on this Rezoning Petition for the purpose of discussing this rezoning proposal with nearby property owners and organizations. The Fairburn GIS records indicate that you are either a representative of a registered neighborhood organization or an owner of property that adjoins or is located within 1,000 feet from the Property.

The Official Community Meeting will be held virtually in accordance with guidance provided by the Fairburn Planning Design & Development Department. We invite you to attend one or both virtual Official Community Meetings via Microsoft Teams on Tuesday, June 25th at 6:00 p.m. and/or Tuesday, July 23rd at 6:00 p.m.

You may join the virtual meeting by visiting the following website, and entering the following meeting ID and passcodes: www.microsoft.com/en-us/microsoft-teams/join-a-meeting

June 25th: July 23rd:

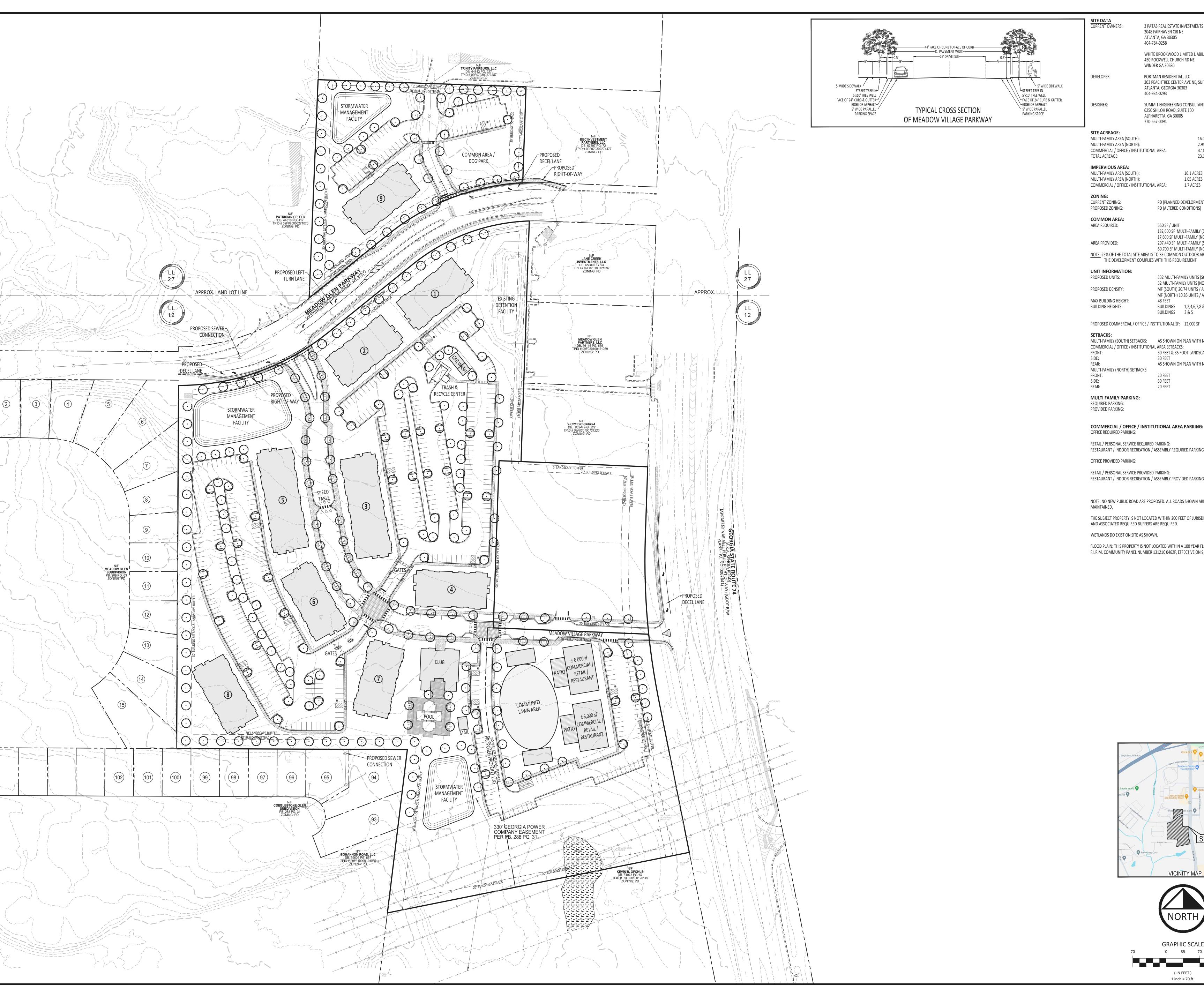
Meeting ID: 219 262 793 262 Meeting ID: 226 776 938 861

Passcode: bHLqnz Passcode: Nb9kj5

If you expect you will be unable to access the virtual meeting and would like additional information, please contact Marc Brambrut at mbrambrut@portmanresidential.com or call 404-934-0293 and we can make alternative arrangements for you to receive the rezoning information.

Sincerely,

Marc Brambrut


Senior Vice President, Development

Portman Meadow Glen Property Map

SITE PLAN

3 PATAS REAL ESTATE INVESTMENTS LLC 2048 FAIRHAVEN CIR NE

ATLANTA, GA 30305

WHITE BROOKWOOD LIMITED LIABILITY CO

450 ROCKWELL CHURCH RD NE WINDER GA 30680

PORTMAN RESIDENTIAL, LLC 303 PEACHTREE CENTER AVE NE, SUITE 575 ATLANTA, GEORGIA 30303

SUMMIT ENGINEERING CONSULTANTS, INC. 6250 SHILOH ROAD, SUITE 100 ALPHARETTA, GA 30005

16.01 ACRES 2.95 ACRES 4.18 ACRES 23.14 ACRES

10.1 ACRES 1.05 ACRES 1.7 ACRES

36%

41%

PD (PLANNED DEVELOPMENT) PD (ALTERED CONDITIONS)

182,600 SF MULTI-FAMILY (SOUTH) 17,600 SF MULTI-FAMILY (NORTH) 207,440 SF MULTI-FAMILY (SOUTH) 60,700 SF MULTI-FAMILY (NORTH) NOTE: 25% OF THE TOTAL SITE AREA IS TO BE COMMON OUTDOOR AREA.

THE DEVELOPMENT COMPLIES WITH THIS REQUIREMENT

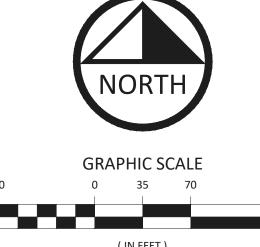
> 332 MULTI-FAMILY UNITS (SOUTH) 32 MULTI-FAMILY UNITS (NORTH) MF (SOUTH) 20.74 UNITS / ACRE (332/16.01) MF (NORTH) 10.85 UNITS / ACRE (32/2.95)

BUILDINGS 1,2,4,6,7,8 & 9 3 STORIES BUILDINGS 3 & 5 4 STORIES

MULTI-FAMILY (SOUTH) SETBACKS: AS SHOWN ON PLAN WITH NO INTERNAL SETBACKS COMMERCIAL / OFFICE / INSTITUTIONAL AREA SETBACKS: 50 FEET & 35 FOOT LANDSCAPE BUFFER

AS SHOWN ON PLAN WITH NO INTERNAL SETBACKS

2.0 SPACES PER UNIT 1.5 SPACES PER UNIT


1 SPACE PER 250 SF or 1 PER 300 SF 1 SPACE PER 200 SF RESTAURANT / INDOOR RECREATION / ASSEMBLY REQUIRED PARKING: 1 SPACE PER 100 SF

1 SPACE PER 250 SF or 1 PER 300 SF 1 SPACE PER 200 SF RESTAURANT / INDOOR RECREATION / ASSEMBLY PROVIDED PARKING: 1 SPACE PER 150 SF (CONCURRENT VARIANCE)

NOTE: NO NEW PUBLIC ROAD ARE PROPOSED. ALL ROADS SHOWN ARE TO BE PRIVATELY OWNED AND

THE SUBJECT PROPERTY IS NOT LOCATED WITHIN 200 FEET OF JURISDICTIONAL WATERS. NO STREAMS AND ASSOCIATED REQUIRED BUFFERS ARE REQUIRED.

FLOOD PLAIN: THIS PROPERTY IS NOT LOCATED WITHIN A 100 YEAR FLOOD PLAIN AS SHOWN ON F.I.R.M. COMMUNITY PANEL NUMBER 13121C 0462F, EFFECTIVE ON 9/18/2013.

Drawing No.

S-23-017zon.dwg

COLOR CONCEPTUAL SITE PLAN

TRAFFIC STUDY

TRAFFIC IMPACT STUDY FOR 8055 SENOIA ROAD MIXED-USE DEVELOPMENT

FAIRBURN, GEORGIA

Prepared for:

Portman Residential, LLC. 303 Peachtree Center Ave NE # 575 Atlanta, GA 30303

Prepared By:

A&R Engineering Inc.

2160 Kingston Court, Suite O Marietta, GA 30067 Tel: (770) 690-9255 Fax: (770) 690-9210 www.areng.com

> May 30, 2024 Revised July 31, 2024 A & R Project # 24-095

TABLE OF CONTENTS

ltem		Page
1.0	Introduction	1
2.0	Existing Facilities / Conditions	4
2.1	Roadway Facilities	4
2.1.1	SR 74 (Senoia Road)	4
2.1.2	Meadow Glen Parkway	4
2.1.3	Landrum Road	4
2.1.4	Milam Road	4
3.0	Study Methodology	5
3.1	Unsignalized Intersections	5
3.2	Signalized Intersections	6
4.0	Existing 2024 Traffic Analysis	7
4.1	Existing Traffic Volumes	7
4.2	Existing Traffic Operations	10
5.0	Proposed Development	11
5.1	Trip Generation	13
5.2	Trip Distribution	13
6.0	Future 2026 Traffic Analysis	16
6.1	Future "No-Build" Conditions	16
6.1.1	Annual Traffic Growth	16
6.2	Future "Build" Conditions	16
6.3	Auxiliary Lane Analysis	19
6.3.1	Left Turn Lane Analysis	19
6.3.2	Deceleration Turn Lane Analysis	19
6.4	Future Traffic Operations	20
6.4.1	Left-Turn Phase Analysis	20
7.0	Conclusions and Recommendations	22
7.1	Recommendations for Site Access Configuration	23
Append	dix	

LIST OF TABLES

ltem	Page
Table 1 – Level-of-service Criteria for Unsignalized Intersections	5
Table 2 – Level-of-service Criteria for Signalized Intersections	6
Table 3 – Existing Intersection Operations	10
Table 4 – Trip Generation – Proposed Site	13
Table 4a – Trip Generation – Adjacent Parcel	13
Table 5 – GDOT Requirements for Left Turn Lanes	19
Table 6 – Future Intersection Operations	20
LIST OF FIGURES	
ltem	Page
Figure 1 – Location Map	3
Figure 2 – Existing Weekday Peak Hour Volumes	8
Figure 3 – Existing Traffic Control and Lane Geometry	9
Figure 4 – Site Plan	12
Figure 5 – Trip Distribution and Site Generated Peak Hour Volumes	14
Figure 6 – Site Peak Hour Pass-by Volumes	15
Figure 7 – Future (No-Build) Peak Hour Volumes	17
Figure 8 – Future (Build) Peak Hour Volumes	18
Figure 9 – Future Traffic Control and Lane Geometry	21

1.0 INTRODUCTION

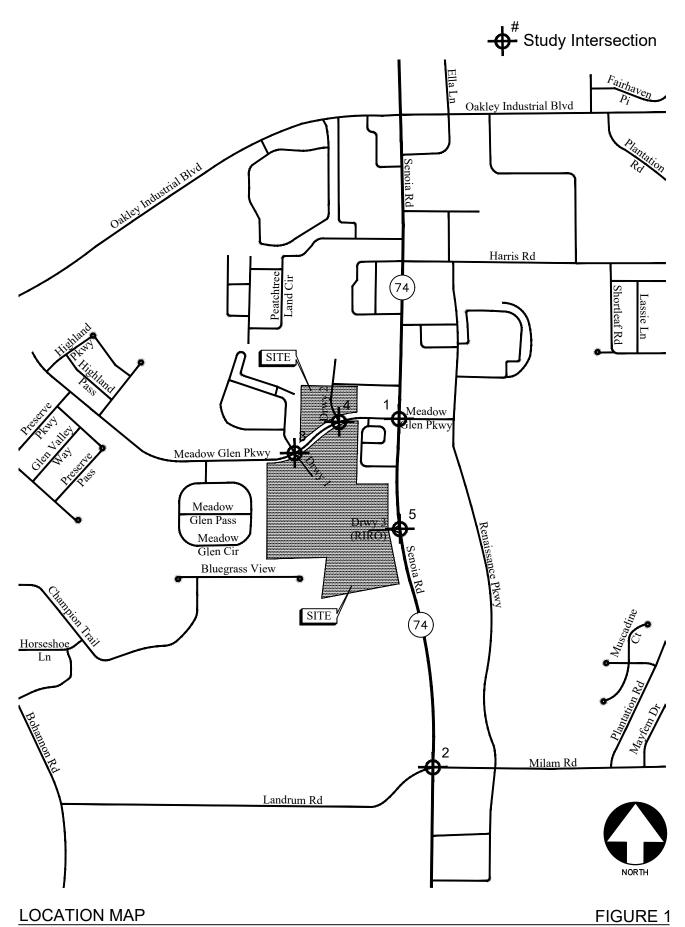
The purpose of this study is to determine the traffic impact from the proposed mixed-use development that will be located at 8055 Senoia Road (SR 74) in Fairburn, Georgia. The traffic analysis evaluates the current operations and the future conditions with the traffic generated by the development. The proposed development will consist of:

Low-Rise Apartments: 300 units

Townhomes: 30 unitsRetail: 3,600 sfRestaurant: 8,400 sf

An adjacent parcel that will have joint access has the following proposed land-uses. We have included the trips from the adjacent parcel in our analysis.

Retail: 11,200 sfRestaurant: 4,450 sf


The development proposes access at the following locations:

- Site Driveway 1: Proposed full access driveway on Meadow Glen Parkway, across from the driveway to Cambridge Faire Apartment Homes
- Site Driveway 2: Existing full access driveway on Meadow Glen Parkway, shared with Tractor Supply Company for townhomes.
- Site Driveway 3: Proposed right-in/right-out driveway on SR 74 (Senoia Road)

The AM and PM peak hours have been analyzed in this study. In addition to the site access points, this study includes the evaluation of traffic operations at the intersections of:

- SR 74 (Senoia Road) @ Meadow Glen Parkway
- SR 74 (Senoia Road @ Landrum Road / Milam Road

The location of the development and the surrounding roadway network is shown in Figure 1.

2.0 EXISTING FACILITIES / CONDITIONS

2.1 Roadway Facilities

The following is a brief description of each of the roadway facilities located in proximity to the site:

2.1.1 SR 74 (Senoia Road)

SR 74 (Senoia Road) is a north-south, four-lane, median-divided roadway with a posted speed limit of 55 mph in the vicinity of the site. Georgia Department of Transportation (GDOT) traffic counts (Station ID 121-0278) indicate that the daily traffic volume on SR 74 (Senoia Road) in 2022 was 35,600 vehicles per day between Meadow Glen Parkway and Landrum Road / Milam Road. GDOT classifies SR 74 (Senoia Road) as an Urban Principal Arterial roadway.

2.1.2 Meadow Glen Parkway

Meadow Glen Parkway is an east-west, two-lane, median-divided roadway with a posted speed limit of 25 mph in the vicinity of the site.

2.1.3 Landrum Road

Landrum Road is an east-west, two-lane, un-divided roadway with a posted speed limit of 35 mph in the vicinity of the site. GDOT traffic counts (Station ID 121-8811) indicate that the daily traffic volume on Landrum Road in 2022 was 2,320 vehicles per day west of SR 74 (Senoia Road). GDOT classifies Landrum Road as an Urban Local roadway.

2.1.4 Milam Road

Milam Road is an east-west, two-lane, un-divided roadway with a posted speed limit of 35 mph in the vicinity of the site. GDOT traffic counts (Station ID 113-8108) indicate that the daily traffic volume on Milam Road in 2022 was 4,100 vehicles per day east of SR 74 (Senoia Road). GDOT classifies Milam Road as an Urban Local roadway.

3.0 STUDY METHODOLOGY

In this study, the methodology used for evaluating traffic operations at each of the subject intersections is based on the criteria set forth in the Transportation Research Board's Highway Capacity Manual, 6th edition (HCM 6). Synchro software, which utilizes the HCM methodology, was used for the analysis. The following is a description of the methodology employed for the analysis of unsignalized and signalized intersections.

3.1 Unsignalized Intersections

For unsignalized intersections controlled by a stop sign on minor streets, the level-of-service (LOS) for motor vehicles with controlled movements is determined by the computed control delay according to the thresholds stated in Table 1 below. LOS is determined for each minor street movement (or shared movement), as well as major street left turns. LOS is not defined for the intersection as a whole or for major street approaches. The LOS of any controlled movement which experiences a volume to capacity ratio greater than 1 is designed as "F" regardless of the control delay.

Control delay for unsignalized intersections includes initial deceleration delay, queue move-up time, stopped delay and final acceleration delay. Several factors affect the control delay for unsignalized intersections, such as the availability and distribution of gaps in the conflicting traffic stream, critical gaps and follow-up time for a vehicle in the queue.

Level-of-service is assigned a letter designation from "A" through "F". Level-of-service "A" indicates excellent operations with little delay to motorists, while level-of-service "F" exists when there are insufficient gaps of acceptable size to allow vehicles on the side street to cross the main road without experiencing long delays.

Table 1 — Level-of-service Criteria for Unsignalized Intersections												
Control Delay (sec/vehicle)	LOS by Volume-to-Capacity Ratio*											
Control Delay (sec/ venicle)	v/c ≤ 1.0	v/c > 1.0										
≤ 10	А	F										
> 10 and ≤ 15	В	F										
> 15 and ≤ 25	С	F										
> 25 and ≤ 35	D	F										
> 35 and ≤ 50	Е	F										
> 50	F	F										

^{*}The LOS criteria apply to each lane on a given approach and to each approach on the minor street. LOS is not calculated for major-street approaches or for the intersection.

Source: Highway Capacity Manual, 6th edition, Exhibit 20-2 LOS Criteria: Motorized Vehicle Mode

3.2 Signalized Intersections

According to HCM procedures, LOS can be calculated for the entire intersection, each intersection approach, and each lane group. HCM uses control delay alone to characterize LOS for the entire intersection or an approach. Control delay per vehicle is composed of initial deceleration delay, queue move-up time, stopped delay and final acceleration delay. Both control delay and volume-to-capacity ratio are used to characterize LOS for a lane group. A volume-to-capacity ratio greater than 1.0 for a lane group indicates failure from capacity perspective. Therefore, such a lane group is assigned LOS F regardless of the amount of control delay.

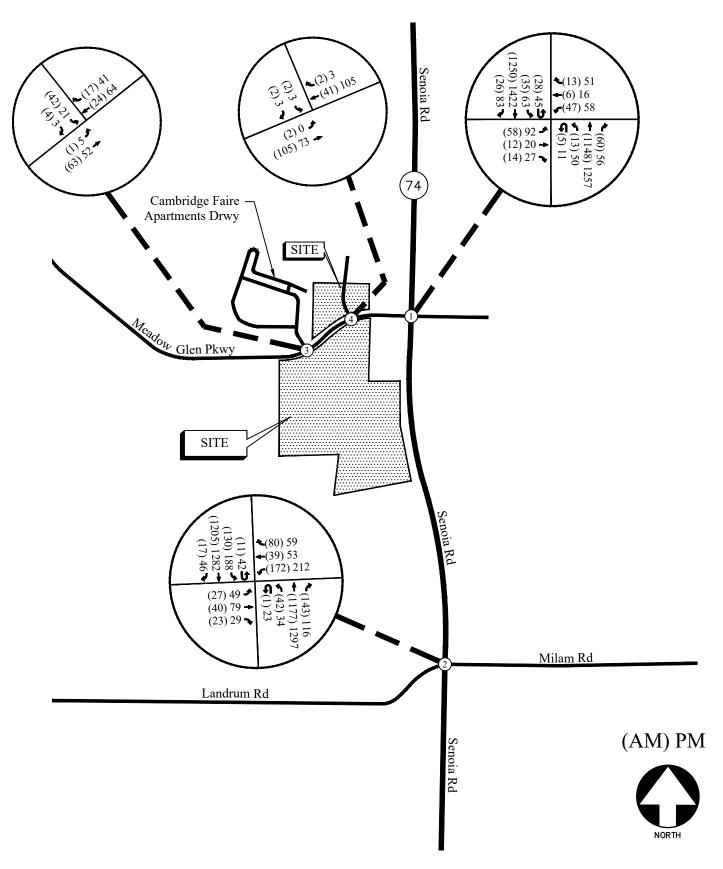
Table 2 below summarizes the LOS criteria from HCM for motorized vehicles at signalized intersections.

Table 2 — Level-of-service Criteria for Signalized Intersections												
Control Delay (sec/vehicle)*	LOS for Lane Group by Volume-to-Capacity Ratio											
Control Delay (sec/ vehicle)	v/c ≤ 1.0	v/c > 1.0										
≤ 10	А	F										
> 10 and ≤ 20	В	F										
> 20 and ≤ 35	С	F										
> 35 and ≤ 55	D	F										
> 55 and ≤ 80	Е	F										
> 80	F	F										

^{*}For approach-based and intersection wide assessments, LOS is defined solely by control delay

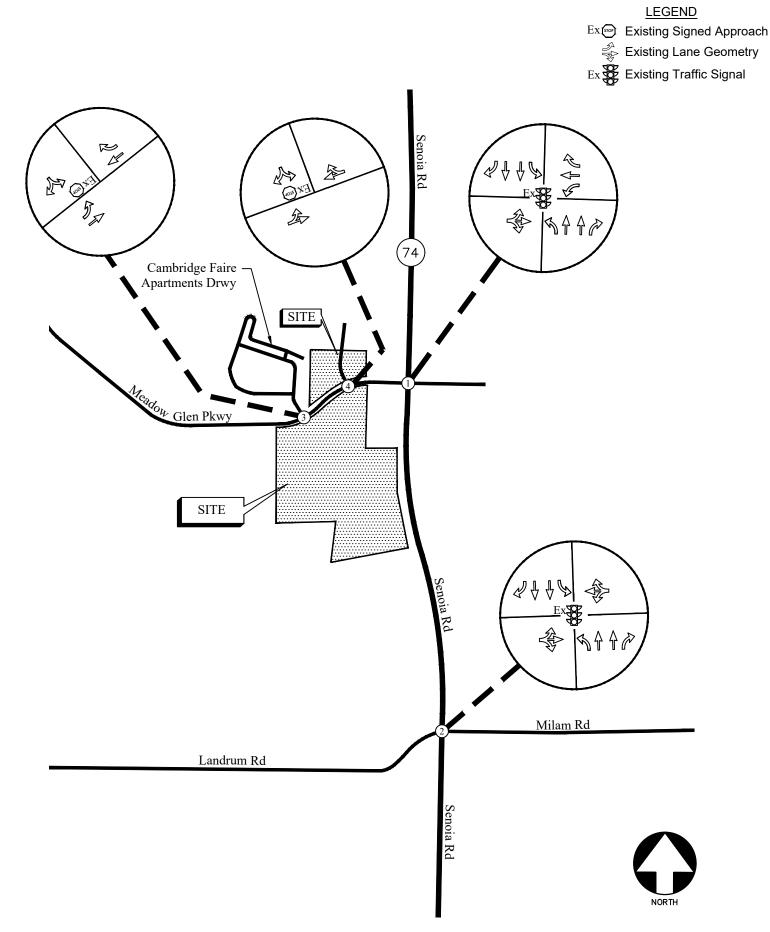
Source: Highway Capacity Manual, 6th edition, Exhibit 19-8 LOS Criteria: Motorized Vehicle Mode

LOS A is typically assigned when the volume-to-capacity (v/c) ratio is low and either progression is exceptionally favorable, or the cycle length is very short. LOS B is typically assigned when the v/c ratio is low and either progression is highly favorable, or the cycle length is short. However, more vehicles are stopped than with LOS A. LOS C is typically assigned when progression is favorable, or the cycle length is moderate. Individual cycle failures (one or more queued vehicles are not able to depart because of insufficient capacity during the cycle) may begin to appear at this level. Many vehicles still pass through the intersection without stopping, but the number of vehicles stopping is significant. LOS D is typically assigned when the v/c ratio is high and either progression is ineffective, or the cycle length is long. There are many vehicle-stops and individual cycle failures are noticeable. LOS E is typically assigned when the v/c ratio is high, progression is very poor, the cycle length is long, and individual cycle failures are frequent. LOS F is typically assigned when the v/c ratio is very high, progression is very poor, the cycle length is long, and most cycles fail to clear the queue.


4.0 EXISTING 2024 TRAFFIC ANALYSIS

4.1 Existing Traffic Volumes

Existing traffic counts were obtained at the following study intersections:


- SR 74 (Senoia Road) @ Meadow Glen Parkway
- SR 74 (Senoia Road @ Landrum Road / Milam Road
- Meadow Glen Parkway @ Cambridge Faire Apartment Homes Driveway

Turning movement counts were collected on Thursday, May 16, 2024. All turning movement counts were recorded during the AM and PM peak hours between 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM, respectively. Truck data was included separately in the counts. The four consecutive 15-minute interval volumes that produced the highest volume at the intersections were then determined. These volumes make up the peak hour traffic volumes for the intersections counted and are shown in Figure 2. The existing traffic control and lane geometry for the intersections are shown in Figure 3.

EXISTING WEEKDAY PEAK-HOUR VOLUMES

FIGURE 2

EXISTING TRAFFIC CONTROL AND LANE GEOMETRY

FIGURE 3

4.2 Existing Traffic Operations

Existing 2024 traffic operations were analyzed at the study intersections in accordance with the HCM methodology. The results of the analyses are shown in Table 3.

	Table 3 — Existing Inter	RSECTION OP	ERATIONS			
	Intersection	Traffic	LOS (I	Delay)		
	intersection	Control	AM Peak Hour	PM Peak Hour		
	SR 74 (Senoia Road) @ Meadow Glen Parkway		<u>A (8.4)</u>	<u>B (12.9)</u>		
	-Eastbound Approach		E (56.9)	D (54.5)		
1	-Westbound Approach	Signalized	D (53.8)	D (48.6)		
	-Northbound Approach		A (6.1)	A (9.5)		
	-Southbound Approach		A (5.6)	B (10.2)		
	SR 74 (Senoia Road @ Landrum Road / Milam Road		<u>C (21.3)</u>	<u>C (28.4)</u>		
	-Eastbound Approach		D (37.2)	D (35.1)		
2	-Westbound Approach	Signalized	D (52.0)	D (53.1)		
	-Northbound Approach		B (17.8)	C (25.8)		
	-Southbound Approach		B (17.4)	C (25.0)		
	Meadow Glen Parkway @ Cambridge Faire	Stop				
3	Apartment Homes Driveway	Controlled on				
3	-Eastbound Left	SB Approach	A (7.3)	A (7.4)		
	-Southbound Approach	эв Арргоасп	A (9.3)	A (9.3)		
	Meadow Glen Parkway @ Tractor Supply Driveway	Stop				
4	-Eastbound Left	Controlled on	A (7.3)	A (7.5)		
	-Southbound Approach	SB Approach	A (9.0)	A (9.2)		

The results of the existing traffic operations analysis indicate that the signalized study intersections are operating at an overall level of service "C" or better in both the AM and PM peak hours, while the stop-controlled approach at the unsignalized study intersection is operating at a level of service "A" in both the AM and PM peak hours.

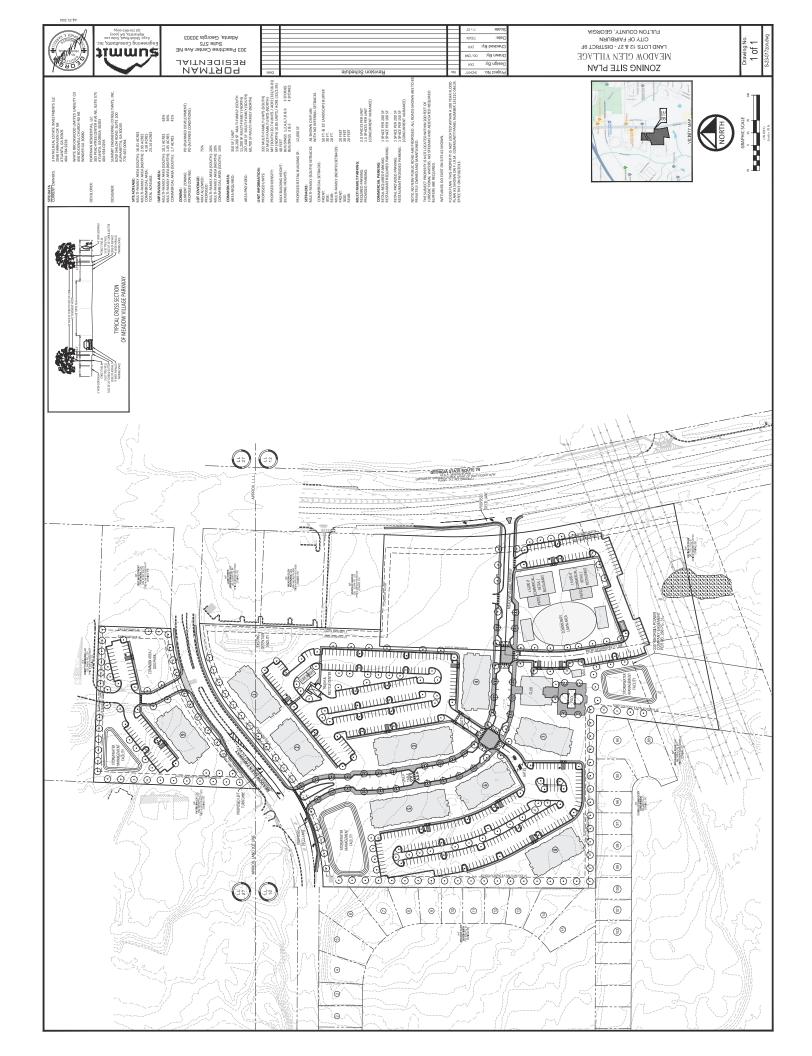
5.0 PROPOSED DEVELOPMENT

The proposed mixed-use development will be located at 8055 Senoia Road (SR 74) in Fairburn, Georgia. The development will consist of:

Low-Rise Apartments: 300 units

Townhomes: 30 unitsRetail: 3,600 sfRestaurant: 8,400 sf

An adjacent parcel that will have joint access has the following proposed land-uses. We have included the trips from the adjacent parcel in our analysis.


Retail: 11,200 sfRestaurant: 4,450 sf

The development proposes access at the following locations:

- Site Driveway 1: Proposed full access driveway on Meadow Glen Parkway, across from the driveway to Cambridge Faire Apartment Homes
- Site Driveway 2: Existing full access driveway on Meadow Glen Parkway, shared with Tractor Supply Company for townhomes.
- Site Driveway 3: Proposed right-in/right-out driveway on SR 74 (Senoia Road)

A site plan is shown in Figure 4.

5.1 Trip Generation

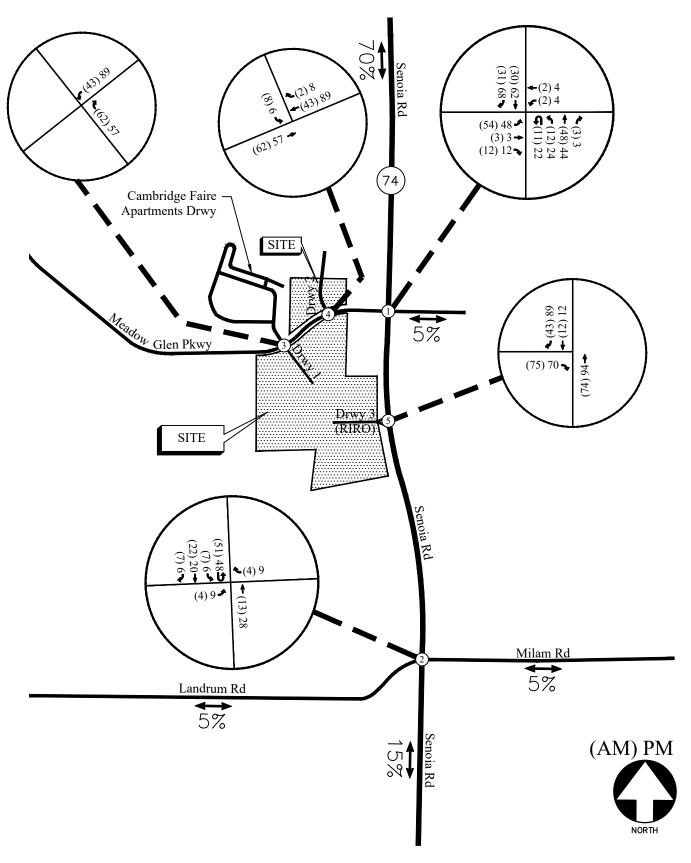
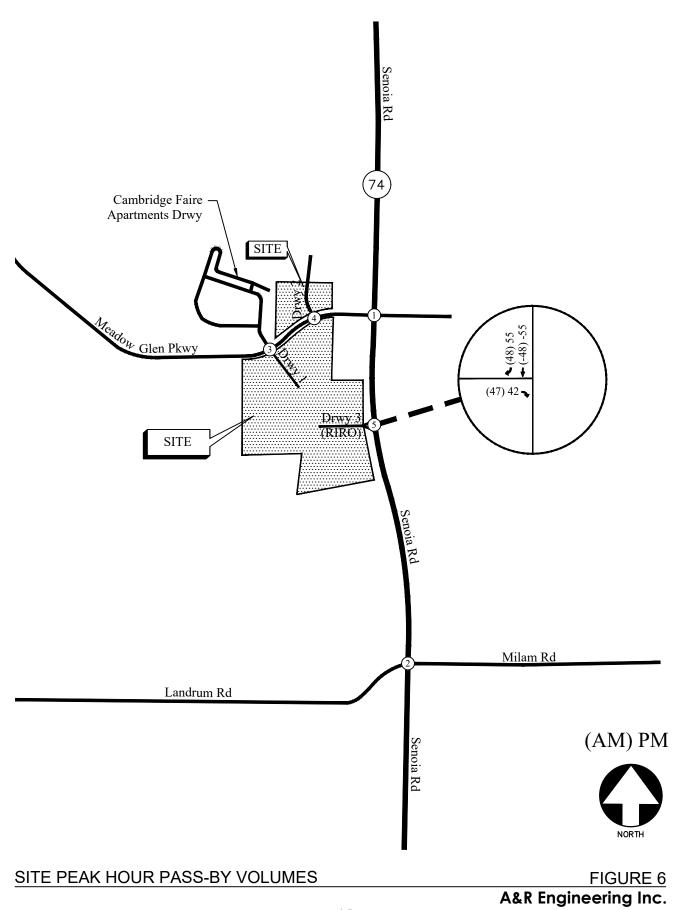

Trip generation estimates for the project were based on the rates and equations published in the 11th edition of the Institute of Transportation Engineers (ITE) Trip Generation report. The trip generation was based on the following ITE Land Uses: 215 – Single-Family Attached Housing, 220 – Multifamily Housing (Low-Rise) - Not Close to Rail Transit, 822 – Strip Retail Plaza (<40k), 931 – Restaurant and 934 – Restaurant. Due to the nature of the development, pass-by and mixed-use reductions have been applied per ITE standards. The calculated total trip generation for the proposed development is shown in Table 4.

Table 4 —	TRIP GENE	RATIO	л — Рг	ROPOS	ED SITI	Ξ		
Land Use	Size	AM	Peak H	our	PM	24 Hour		
Land Ose	3126	Enter	Exit	Total	Enter	Exit	Total	Two-way
ITE 215 - Single-Family Attached Housing	30 units	2	8	10	8	6	14	178
ITE 220 – Multifamily Housing	300 units	28	88	116	94	56	150	1,998
Mixed-Us	se Reduction	-1	-1	-2	-5	-6	-11	-109
ITE 822 – Strip Retail Plaza (<40k)	3,600 sf	9	6	15	19	19	38	382
Mixed-Us	se Reduction	-	-	-	-2	-2	-4	-38
ITE 931 – Restaurant	8,400 sf	3	3	6	44	22	66	704
Mixed-Us	se Reduction	-1	-1	-2	-4	-3	-7	-71
Pass-by Tr	ips (0%) 44%	0	0	0	-18	-8	-26	-260*
Total Trips (without Reduction	ns)	42	105	147	165	103	268	3,262
New External Trips (with Reduct	ions)	40	103	143	136	84	220	2,784

Table 4a – ⁻	TRIP GENER	RATION	— AD	JACEN	T PARC	EL		
Land Use	Size	AM	Peak H	our	PM	24 Hour		
Land Ose	Size	Enter	Exit	Total	Enter	Exit	Total	Two-way
ITE 822 – Strip Retail Plaza (<40k)	11,200 sf	19	12	31	42	42	84	702
Mixed-Us	se Reduction	-8	-6	-14	-13	-12	-25	-85
ITE 934 –Restaurant	4,450 sf	101	98	199	76	71	147	2,080
Mixed-Us	e Reduction	-16	-15	-31	-18	-10	-28	-209
Pass-by Trip	os (50%) 55%	-48	-47	-95	-37	-44	-71	-1,156
Total Trips (without Reduction	ns)	120	110	230	118	113	231	2,782
New External Trips (with Reduct	ions)	48	42	90	50	49	99	1,332


5.2 Trip Distribution

The trip distribution describes how traffic arrives and departs from the site. An overall trip distribution was developed for the site based on a review of the existing travel patterns in the area and the locations of major roadways and highways that will serve the development. The site-generated peak hour traffic volumes, shown in Table 4, were assigned to the study area intersections based on this distribution. The outer-leg distribution and AM and PM peak hour new traffic generated by the site are shown in Figure 5. Pass-by volumes have also been distributed based on existing travel patterns and are shown in Figure 6.

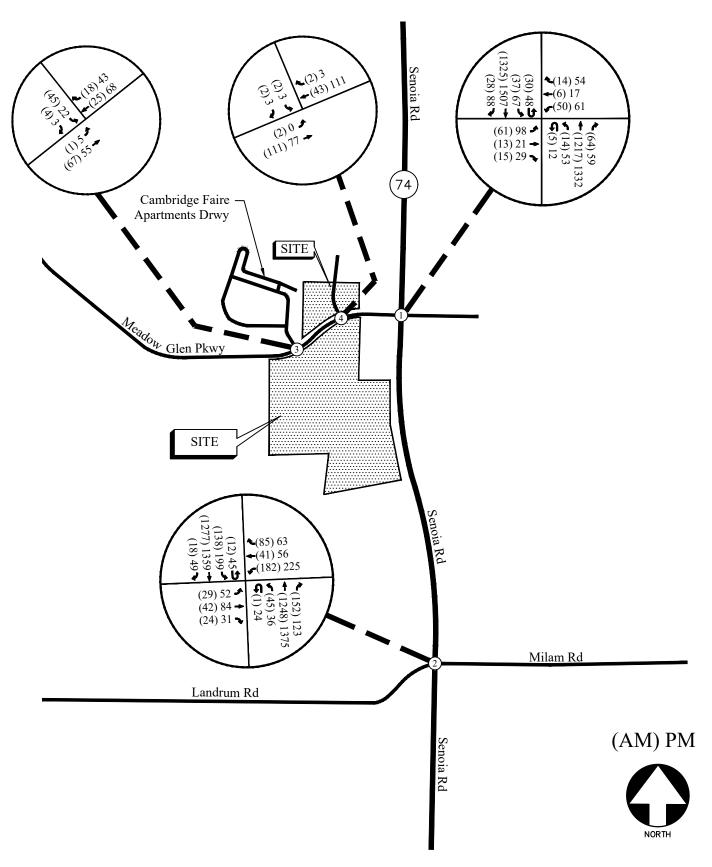
TRIP DISTRIBUTION AND NEW SITE-GENERATED

FIGURE 5 A&R Engineering Inc.

6.0 FUTURE 2026 TRAFFIC ANALYSIS

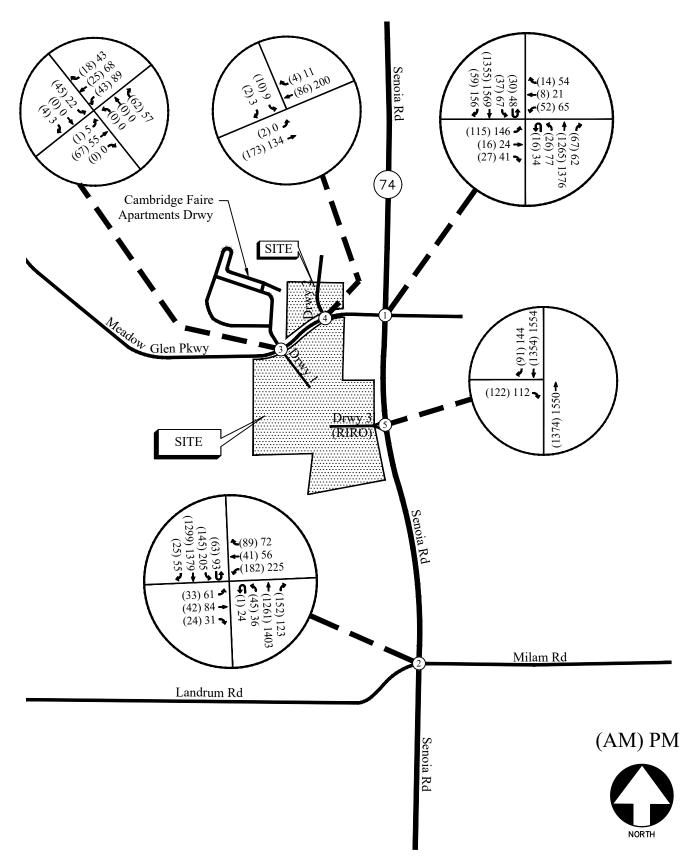
The future 2026 traffic operations are analyzed for the "Build" and "No-Build" conditions.

6.1 Future "No-Build" Conditions


The "No-Build" (or background) conditions provide an assessment of how traffic will operate in the study horizon year without the study site being developed as proposed, with projected increases in through traffic volumes due to normal annual growth. The Future "No-Build" volumes consist of the existing traffic volumes (Figure 2) plus increases for annual growth of traffic.

6.1.1 Annual Traffic Growth

To evaluate future traffic operations in this area, a projection of normal traffic growth was applied to the existing volumes. The Georgia Department of Transportation recorded average daily traffic volumes at several locations in the vicinity of the site. Reviewing the growth over the last five years (2017-2019, 2021-2022) revealed growth of approximately 3% in the area. This growth factor was applied to the existing traffic volumes to estimate the future year traffic volumes prior to the addition of site-generated traffic. The resulting Future "No-Build" volumes on the roadway are shown in Figure 7.


6.2 Future "Build" Conditions

The "Build" or development conditions include the estimated background traffic from the "No-Build" conditions plus the traffic from the proposed development. In order to evaluate future traffic operations in this area, the additional traffic volumes from the site (Figure 5) and pass-by volumes (Figure 6) were added to base traffic volumes (Figure 7) to calculate the future traffic volumes after the construction of the development. These total future "Build" traffic volumes are shown in Figure 8.

FUTURE (NO-BUILD) WEEKDAY PEAK HOUR VOLUMES

FIGURE 7

FUTURE (BUILD) WEEKDAY PEAK HOUR VOLUMES

FIGURE 8

6.3 Auxiliary Lane Analysis

Included below are analyses for left-turn lanes and deceleration lanes for all site driveways per City of Fairburn/GDOT standards. The analyses below are based off the trip distribution included in Section 5.2. According to the trip distribution, the 24-hour two-way volume entering and exiting the site is 178 townhome trips and 5,636 other trips. The ADT on Meadow Glen Parkway is assumed to be less than 6,000 vehicles based on the GDOT volumes on the surrounding roadways.

6.3.1 Left Turn Lane Analysis

City of Fairburn's Development Standards 2008 do not give left-turn lane standards. We are therefore using GDOT standards. For two lane roadways with AADT's less than 6,000 vehicles and a posted speed limit of 25 mph, the daily site generated traffic left-turn movements threshold to warrant a left-turn lane is 300 left-turning vehicles a day. The projected left-turn volumes per day for each driveway is included in Table 5.

Table 5	5 — GDOT REQUIREN	MENTS FOR LEFT	TURN LAN	ES	
Intersection	Left turn traffic (% total entering)	Left-turn Volume (vehicles/day)	Roadway Speed/# lanes/ ADT	GDOT Threshold (vehicles/ day)	Warrants met?
Meadow Glen Parkway @ Cambridge Faire Apartment Homes Driveway / Site Driveway 1	50% of Apartment/Retail/ Restaurant Trips	1,227	25 mph / 2-Lane / < 6,000	300	Yes
Meadow Glen Parkway @ Shared Site Driveway 2	0%	0	25 mph / 2-Lane / < 6,000	300	No

^{*}Pass-by reductions included, mixed use reductions not included

A left-turn lane is warranted on Meadow Glen Parkway at Site Driveway 1 per GDOT standards.

6.3.2 Deceleration Turn Lane Analysis

Section 4.6 of City of Fairburn's Land Development Standards Manual 2008 requires a deceleration for all residential developments of more than 2 family residences. Therefore right-turn lanes will be warranted.

6.4 Future Traffic Operations

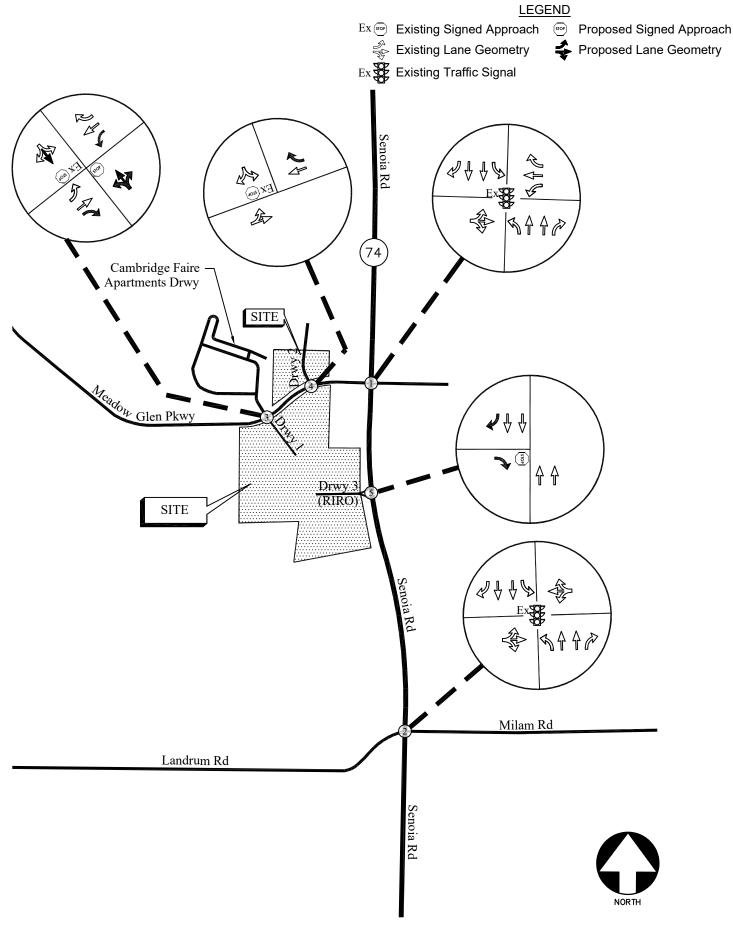

The future "No-Build" and "Build" traffic operations were analyzed using the volumes in Figure 7 and Figure 8, respectively. The results of the future traffic operations analysis are shown below in Table 6. Recommendations for future traffic control and lane geometry are shown in Figure 9.

	Table 6 – Future Inter	RSECTION OPERATIONS									
			LOS ([Delay)							
	Intersection	NO-B	BUILD	BUILD							
		AM Peak	PM Peak	AM Peak	PM Peak						
	SR 74 (Senoia Road) @ Meadow Glen Parkway	<u>A (8.9)</u>	<u>B (13.8)</u>	B (12.9)	<u>B (18.8)</u>						
	-Eastbound Approach	E (56.7)	D (54.1)	E (56.1)	D (51.3)						
1	-Westbound Approach	D (53.5)	D (47.9)	D (47.6)	D (42.1)						
	-Northbound Approach	A (6.5)	B (10.5)	A (9.5)	B (15.2)						
	-Southbound Approach	A (6.1)	B (11.4)	A (9.7)	B (16.8)						
	SR 74 (Senoia Road @ Landrum Road / Milam Road	<u>C (23.6)</u>	<u>C (34.9)</u>	<u>C (25.9)</u>	<u>D (43.4)</u>						
	-Eastbound Approach	D (36.1)	C (33.8)	D (36.1)	C (33.6)						
2	-Westbound Approach	D (52.5)	D (54.1)	D (54.1)	D (54.7)						
	-Northbound Approach	C (20.3)	D (35.4)	C (22.5)	D (45.3)						
	-Southbound Approach	C (20.0)	C (30.4)	C (22.8)	D (40.1)						
	Meadow Glen Parkway @ Cambridge Faire										
	Apartment Homes Driveway / Site Driveway 1										
3	-Eastbound Left	A (7.3)	A (7.4)	A (7.3)	A (7.4)						
	-Westbound Left	-	-	A (7.5)	A (7.5)						
	-Northbound Approach	-	-	A (9.0)	A (8.8)						
	-Southbound Approach	A (9.3)	A (9.3)	B (11.2)	B (11.8)						
	Meadow Glen Pkwy @ Townhomes Shared Drwy 2										
4	-Eastbound Left	A (7.3)	A (7.5)	A (7.4)	A (7.7)						
	-Southbound Approach	A (9.3)	A (9.3)	B (10.2)	B (10.5)						
5	SR 74 (Senoia Road) @ Site Driveway 3 (RIRO)	_	_								
	-Eastbound Approach			C (20.6)	C (24.3)						

The results of the future traffic operations analysis show that the signalized study intersections will continue to operate at a satisfactory overall level of service "D" or better in both the AM and PM peak hours, while the stop-controlled approaches at the unsignalized study intersections will also operate at a satisfactory level of service "C" or better. Impact of the stie generated traffic on traffic operations at the study intersections is minimal.

6.4.1 Left-Turn Phase Analysis

A left-turn phase analysis was completed for eastbound and westbound approaches of Meadow Glen Parkway at SR 74 (Senoia Road) based on traffic volumes in "No-Build" and "Build" conditions. In both conditions, an eastbound left-turn phase is warranted based only on PM peak hour volumes. A left-turn phase is not warranted based on cross-product rule. There are no left-turn crashes reported at the intersection in Gears during the last 2 years (Jan 2022 to December 2023). Therefore, a left-turn phase is not warranted based on crash history. Left-Turn Phase Analysis and crash history are included in Appendix.

FUTURE TRAFFIC CONTROL AND LANE GEOMETRY

FIGURE 9

7.0 CONCLUSIONS AND RECOMMENDATIONS

Traffic impacts were evaluated for the proposed mixed-use development that will be located at 8055 Senoia Road (SR 74) in Fairburn, Georgia. The proposed development will consist of:

• Low-Rise Apartments: 300 units

Townhomes: 30 unitsRetail: 3,600 sfRestaurant: 8,400 sf

An adjacent parcel that will have joint access has the following proposed land-uses. We have included the trips from the adjacent parcel in our analysis.

Retail: 11,200 sfRestaurant: 4,450 sf

The development proposes access at the following locations:

- Site Driveway 1: Proposed full access driveway on Meadow Glen Parkway, across from the driveway to Cambridge Faire Apartment Homes
- Site Driveway 2: Existing full access driveway on Meadow Glen Parkway, shared with Tractor Supply Company
- Site Driveway 3: Proposed right-in/right-out driveway on SR 74 (Senoia Road)

The AM and PM peak hours have been analyzed in this study. In addition to the site access points, this study includes the evaluation of traffic operations at the intersections of:

- SR 74 (Senoia Road) @ Meadow Glen Parkway
- SR 74 (Senoia Road @ Landrum Road / Milam Road

The analysis included the evaluation of Future operations for "No-Build" and "Build" conditions, both of which account for increases in annual growth of through traffic.

The results of the future traffic operations analysis show that the signalized study intersections will continue to operate at a satisfactory overall level of service "D" or better in both the AM and PM peak hours, while the stop-controlled approaches at the unsignalized study intersections will also operate at a satisfactory level of service "C" or better. Impact of the stie generated traffic on traffic operations at the study intersections is minimal.

7.1 Recommendations for Site Access Configuration

The following access configuration is recommended for the site driveway intersections.

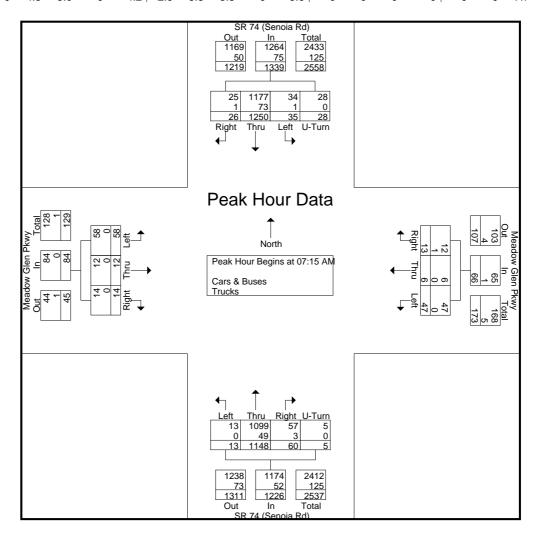
- <u>Site Driveway 1: Proposed full access driveway on Meadow Glen Parkway, across from the driveway to Cambridge Faire Apartment Homes</u>
 - One entering lane and one exiting lane.
 - Stop-sign controlled on the driveway approach with Meadow Glen Parkway remaining free flow.
 - Left Turn Lane on Meadow Glen Parkway for entering traffic.
 - o Right Turn Lane on Meadow Glen Parkway for entering traffic.
 - o Provide adequate sight distance per AASHTO standards.
- <u>Site Driveway 2: Existing full access driveway on Meadow Glen Parkway, shared with Tractor Supply Company</u>
 - Existing one entering lane and one exiting lane.
 - Stop-sign controlled on the driveway approach with Meadow Glen Parkway remaining free flow.
 - Right Turn Lane for entering traffic.
 - Confirm adequate sight distance per AASHTO standards.
- Site Driveway 3: Proposed right-in/right-out driveway on SR 74 (Senoia Road)
 - One entering lane and one exiting right-turn lane.
 - o Stop-sign controlled on the driveway approach with SR 74 remaining free flow.
 - Right Turn Lane on SR 74 for entering traffic.
 - o Provide adequate sight distance per AASHTO standards.

Appendix

Linear Regression of Daily Traffic
Existing Intersection Analysis
Future "No-Build" Intersection Analysis
Future "Build" Intersection Analysis
Traffic Volume Worksheets
Left-Turn Phase Analysis
Crash History

EXISTING	INTERSECTION	N TRAFFIC COUNTS	

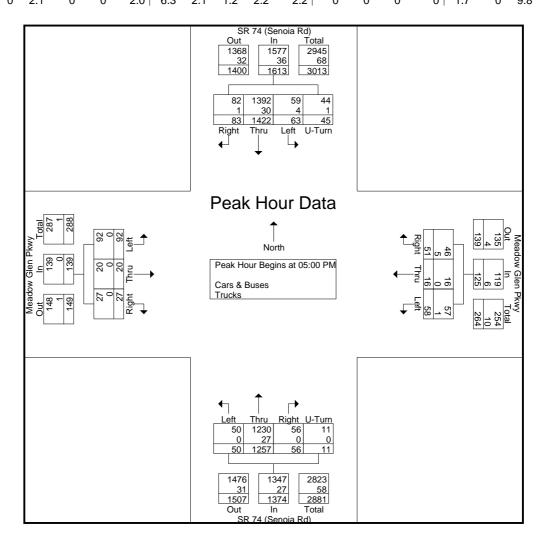
2160 Kingston Court, Suite 'O' Marietta, GA 30067


TMC Data SR 74 (Senoia Rd) @ Meadow Glen Pkwy 7-9 am | 4-6 pm File Name : 20240216 Site Code : 20240216 Start Date : 05-16-2024

	Groups Printed- Cars & Buses - Trucks																		
		SR 74	4 (Sen	oia Rd)		SR 74	1 (Sen	oia Rd))	M€	eadow	Glen P	kwy	Me	adow	Glen P	kwy	
			orthbo	und				outhbo	und				bound				bound		
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
07:00 AM	1	270	3	0	274	8	261	8	7	284	17	0	4	21	6	1	2	9	588
07:15 AM	2	310	11	2	325	10	285	6	6	307	25	2	8	35	12	2	6	20	687
07:30 AM	5	267	24	2	298	10	339	8	3	360	16	5	0	21	11	2	3	16	695
07:45 AM	1	287	19	1_	308	7	301	6	7_	321	6	3	3	12	10	0	1_	11	652
Total	9	1134	57	5	1205	35	1186	28	23	1272	64	10	15	89	39	5	12	56	2622
																		1	
08:00 AM	5	284	6	0	295	8	325	6	12	351	11	2	3	16	14	2	3	19	681
08:15 AM	3	268	5	2	278	11	278	9	13	311	10	1	4	15	15	1	4	20	624
08:30 AM	1	264	6	0	271	9	337	4	10	360	8	2	3	13	10	2	4	16	660
08:45 AM	6	263	3	0	272	15	286	0	9	310	11	3	4	18	7	3	7_	17	617
Total	15	1079	20	2	1116	43	1226	19	44	1332	40	8	14	62	46	8	18	72	2582
*** BREAK **	**																		
04:00 PM	10	278	19	3	310	17	332	11	13	373	32	10	6	48	13	3	18	34	765
04:15 PM	15	275	17	2	309	19	392	21	9	441	23	1	6	30	10	4	14	28	808
04:30 PM	15	315	17	0	347	14	340	22	10	386	17	0	5	22	10	3	13	26	781
04:45 PM	9	287	16	1	313	16	391	16	9	432	30	0	7	37	15	4	14	33	815
Total	49	1155	69	6	1279	66	1455	70	41	1632	102	11	24	137	48	14	59	121	3169
05:00 PM	9	293	11	2	315	16	349	18	9	392	28	4	2	34	13	2	11	26	767
05:15 PM	8	319	11	1	339	11	329	25	14	379	14	5	9	28	17	5	12	34	780
05:30 PM	16	327	15	4	362	19	357	26	11	413	28	4	5	37	16	2	9	27	839
05:45 PM	17	318	19	4	358	17	387	14	11_	429	22	7	11	40	12	7	19	38	865
Total	50	1257	56	11	1374	63	1422	83	45	1613	92	20	27	139	58	16	51	125	3251
Grand Total	123	4625	202	24	4974	207	5289	200	153	5849	298	49	80	427	191	43	140	374	11624
Apprch %	2.5	93	4.1	0.5		3.5	90.4	3.4	2.6		69.8	11.5	18.7		51.1	11.5	37.4		
Total %	1.1	39.8	1.7	0.2	42.8	1.8	45.5	1.7	1.3	50.3	2.6	0.4	0.7	3.7	1.6	0.4	1.2	3.2	
Cars & Buses	123	4444	198	24	4789	194	5078	196	152	5620	297	49	80	426	189	43	132	364	11199
% Cars & Buses	100	96.1	98	100	96.3	93.7	96	98	99.3	96.1	99.7	100	100	99.8	99	100	94.3	97.3	96.3
Trucks	0	181	4	0	185	13	211	4	1	229	1	0	0	1	2	0	8	10	425
% Trucks	0	3.9	2	0	3.7	6.3	4	2	0.7	3.9	0.3	0	0	0.2	1	0	5.7	2.7	3.7

2160 Kingston Court, Suite 'O' Marietta, GA 30067

TMC Data SR 74 (Senoia Rd) @ Meadow Glen Pkwy 7-9 am | 4-6 pm File Name : 20240216 Site Code : 20240216 Start Date : 05-16-2024

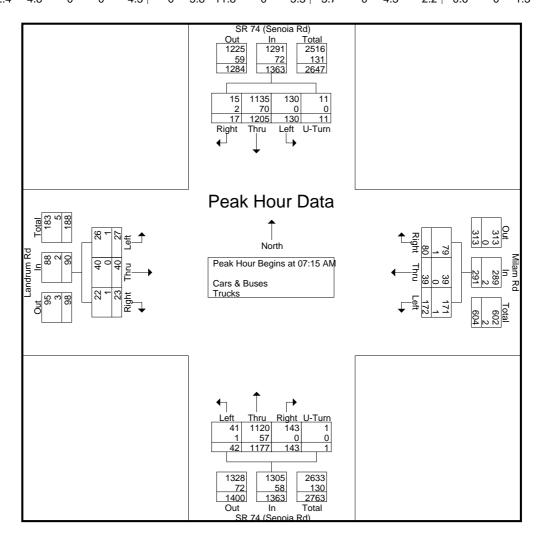

		SR 74	4 (Sen	oia Rd)		SR 74	4 (Sen	oia Rd)		Me	adow	Glen P	kwy	Meadow Glen Pkwy				
		N	orthbo	und			So	outhbo	und			East	bound	-	Westbound				
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour A	nalysis	s From	07:00	AM to	08:45 /	4M - P	eak 1	of 1											
Peak Hour fo	r Entir	re Intei	sectio	n Begii	ns at 07	:15 AN	1												
07:15 AM	2	310	11	2	325	10	285	6	6	307	25	2	8	35	12	2	6	20	687
07:30 AM	5	267	24	2	298	10	339	8	3	360	16	5	0	21	11	2	3	16	695
07:45 AM	1	287	19	1	308	7	301	6	7	321	6	3	3	12	10	0	1	11	652
MA 00:80	5	284	6	0	295	8	325	6	12	351	11	2	3	16	14	2	3	19	681
Total Volume	13	1148	60	5	1226	35	1250	26	28	1339	58	12	14	84	47	6	13	66	2715
% App. Total	1.1	93.6	4.9	0.4		2.6	93.4	1.9	2.1		69	14.3	16.7		71.2	9.1	19.7		
PHF	.650	.926	.625	.625	.943	.875	.922	.813	.583	.930	.580	.600	.438	.600	.839	.750	.542	.825	.977
Cars & Buses	13	1099	57	5	1174	34	1177	25	28	1264	58	12	14	84	47	6	12	65	2587
% Cars & Buses	100	95.7	95.0	100	95.8	97.1	94.2	96.2	100	94.4	100	100	100	100	100	100	92.3	98.5	95.3
Trucks	0	49	3	0	52	1	73	1	0	75	0	0	0	0	0	0	1	1	128
% Trucks	0	4.3	5.0	0	4.2	2.9	5.8	3.8	0	5.6	0	0	0	0	0	0	7.7	1.5	4.7

2160 Kingston Court, Suite 'O' Marietta, GA 30067

TMC Data SR 74 (Senoia Rd) @ Meadow Glen Pkwy 7-9 am | 4-6 pm File Name : 20240216 Site Code : 20240216 Start Date : 05-16-2024

		SR 74	1 (Sen	oia Rd)	SR 74 (Senoia Rd)						adow	Glen P	kwy	Ме				
		No	orthbo	und			Sc	outhbo	und		Eastbound								
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour A	nalysis	s From	04:00	PM to	05:45 F	PM - P	eak 1	of 1											
Peak Hour for Entire Intersection Begins at 05:00 PM																			
05:00 PM	9	293	11	2	315	16	349	18	9	392	28	4	2	34	13	2	11	26	767
05:15 PM	8	319	11	1	339	11	329	25	14	379	14	5	9	28	17	5	12	34	780
05:30 PM	16	327	15	4	362	19	357	26	11	413	28	4	5	37	16	2	9	27	839
05:45 PM	17	318	19	4	358	17	387	14	11	429	22	7	11	40	12	7	19	38	865
Total Volume	50	1257	56	11	1374	63	1422	83	45	1613	92	20	27	139	58	16	51	125	3251
% App. Total	3.6	91.5	4.1	8.0		3.9	88.2	5.1	2.8		66.2	14.4	19.4		46.4	12.8	40.8		
PHF	.735	.961	.737	.688	.949	.829	.919	.798	.804	.940	.821	.714	.614	.869	.853	.571	.671	.822	.940
Cars & Buses	50	1230	56	11	1347	59	1392	82	44	1577	92	20	27	139	57	16	46	119	3182
% Cars & Buses	100	97.9	100	100	98.0	93.7	97.9	98.8	97.8	97.8	100	100	100	100	98.3	100	90.2	95.2	97.9
Trucks	0	27	0	0	27	4	30	1	1	36	0	0	0	0	1	0	5	6	69
% Trucks	0	2.1	0	0	2.0	6.3	2.1	1.2	2.2	2.2	0	0	0	0	1.7	0	9.8	4.8	2.1

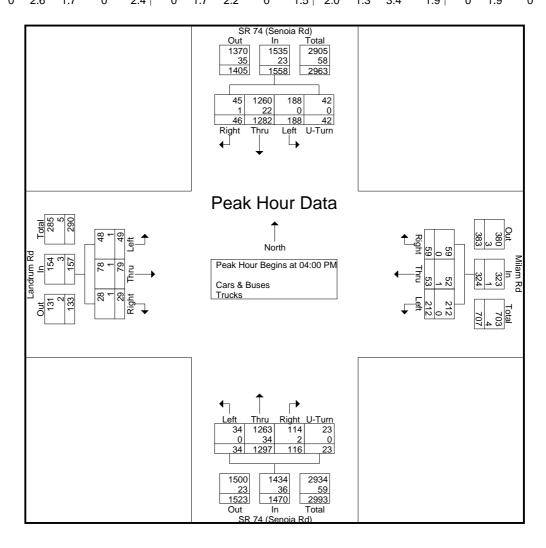
2160 Kingston Court, Suite 'O' Marietta, GA 30067


TMC Data SR 74 (Senoia Rd) @ Milam Rd-Landrum Rd 7-9 am | 4-6 pm File Name : 20240217 Site Code : 20240217 Start Date : 05-16-2024

						(Groups	Printe	ed- Cai	rs & Bus	ses - T	rucks							
		SR 74	4 (Sen	oia Rdj)		SR 74	4 (Sen	oia Rd)		Land	rum Ro	l		Mila	m Rd		
			orthbo	und				outhbo	<u>und</u>				<u>bound</u>				<u>bound</u>		
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
07:00 AM	4	258	21	0	283	22	213	3	0	238	3	16	6	25	35	1	15	51	597
07:15 AM	10	288	42	0	340	28	232	6	3	269	4	13	5	22	49	7	22	78	709
07:30 AM	8	337	45	1	391	31	331	7	1	370	8	9	6	23	43	11	21	75	859
07:45 AM	13	265	35	0	313	34	297	1	5	337	12	10	1_	23	41	10_	22_	73	746
Total	35	1148	143	1	1327	115	1073	17	9	1214	27	48	18	93	168	29	80	277	2911
00 00 444		007	0.4	•	040	0.7	0.45		•	007	١ ٥	•		00			4.5	05	700
08:00 AM	11	287	21	0	319	37	345	3	2	387	3	8	11	22	39	11	15	65	793
08:15 AM	10	269	27	2	308	27	250	3	2	282	7	4	7	18	41	8	26	75	683
08:30 AM	5	268	23	1	297	34	276	7	1	318	8	7	5	20	35	6	10	51	686
08:45 AM	<u>5</u> 31	242 1066	18_ 89	<u>3</u>	268 1192	27 125	280 1151	10 23	7	319 1306	<u>3</u> 21	9 28	<u>1</u> 24	13 73	37 152	4 29	17 68	58 249	658
Total	31	1000	89	О	1192	125	1151	23	/	1306	21	28	24	73	152	29	68	249	2820
09:00 AM	0	15	0	0	15	0	24	1	0	25	0	0	0	0	1	0	1	2	42
*** BREAK **	-		Ū	Ū				•	Ū		, ,		· ·			· ·	•	- '	
Total	0	15	0	0	15	0	24	1	0	25	0	0	0	0	1	0	1	2	42
*** BREAK **	**																		
04:00 PM	7	346	31	6	390	38	305	9	5	357	15	23	10	48	53	16	13	82	877
04:15 PM	9	356	28	7	400	46	352	13	10	421	14	21	8	43	49	8	19	76	940
04:30 PM	8	331	26	2	367	49	289	11	13	362	9	20	3	32	57	14	12	83	844
04:45 PM	10	264	31	8	313	55	336	13	14	418	11	15	8	34	53	15	15	83	848
Total	34	1297	116	23	1470	188	1282	46	42	1558	49	79	29	157	212	53	59	324	3509
05:00 PM	12	265	28	7	312	61	280	14	16	371	8	18	6	32	51	17	18	86	801
05:15 PM	15	293	33	6	347	58	275	12	15	360	10	19	8	37	58	15	17	90	834
05:30 PM	13	307	29	5	354	63	298	11	17	389	9	14	4	27	61	16	13	90	860
05:45 PM	8	299	32	8	347	69	326	9	13	417	7	16	7	30	55	19	15	89	883
Total	48	1164	122	26	1360	251	1179	46	61	1537	34	67	25	126	225	67	63	355	3378
Grand Total	148	4690	470	56	5364	679	4709	133	119	5640	131	222	96	449	758	178	271	1207	12660
Apprch %	2.8	87.4	8.8	1		12	83.5	2.4	2.1		29.2	49.4	21.4		62.8	14.7	22.5		
Total %	1.2	37	3.7	0.4	42.4	5.4	37.2	1.1	0.9	44.5	1	1.8	0.8	3.5	6	1.4	2.1	9.5	
Cars & Buses	145	4529	467	56	5197	678	4541	129	118	5466	128	220	94	442	754	177	267	1198	12303
% Cars & Buses	98	96.6	99.4	100	96.9	99.9	96.4	97	99.2	96.9	97.7	99.1	97.9	98.4	99.5	99.4	98.5	99.3	97.2
Trucks	3	161	3	0	167	1	168	4	1	174	3	2	2	7	4	1	4	9	357
% Trucks	2	3.4	0.6	0	3.1	0.1	3.6	3	8.0	3.1	2.3	0.9	2.1	1.6	0.5	0.6	1.5	0.7	2.8

2160 Kingston Court, Suite 'O' Marietta, GA 30067

TMC Data SR 74 (Senoia Rd) @ Milam Rd-Landrum Rd 7-9 am | 4-6 pm File Name : 20240217 Site Code : 20240217 Start Date : 05-16-2024


																	m Rd		
		SR 74	4 (Sen	oia Rd))		SR 74	4 (Sen	oia Rd)		Landı	rum Rd						
		No	orthbo	und			Sc	outhbo	und			East	bound			West	bound		
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour A	nalysis	s From	07:00	AM to	08:45 A	AM - P	eak 1	of 1											
Peak Hour fo	or Entir	e Inter	sectio	n Begir	ns at 07	:15 AN	1												
07:15 AM	10	288	42	ŏ	340	28	232	6	3	269	4	13	5	22	49	7	22	78	709
07:30 AM	8	337	45	1	391	31	331	7	1	370	8	9	6	23	43	11	21	75	859
07:45 AM	13	265	35	0	313	34	297	1	5	337	12	10	1	23	41	10	22	73	746
08:00 AM	11	287	21	0	319	37	345	3	2	387	3	8	11	22	39	11	15	65	793
Total Volume	42	1177	143	1	1363	130	1205	17	11	1363	27	40	23	90	172	39	80	291	3107
% App. Total	3.1	86.4	10.5	0.1		9.5	88.4	1.2	8.0		30	44.4	25.6		59.1	13.4	27.5		
PHF	.808	.873	.794	.250	.871	.878	.873	.607	.550	.880	.563	.769	.523	.978	.878	.886	.909	.933	.904
Cars & Buses	41	1120	143	1	1305	130	1135	15	11	1291	26	40	22	88	171	39	79	289	2973
% Cars & Buses	97.6	95.2	100	100	95.7	100	94.2	88.2	100	94.7	96.3	100	95.7	97.8	99.4	100	98.8	99.3	95.7
Trucks	1	57	0	0	58	0	70	2	0	72	1	0	1	2	1	0	1	2	134
% Trucks	2.4	4.8	0	0	4.3	0	5.8	11.8	0	5.3	3.7	0	4.3	2.2	0.6	0	1.3	0.7	4.3

2160 Kingston Court, Suite 'O' Marietta, GA 30067

TMC Data SR 74 (Senoia Rd) @ Milam Rd-Landrum Rd 7-9 am | 4-6 pm File Name : 20240217 Site Code : 20240217 Start Date : 05-16-2024

		SR 74	1 (Sen	oia Rd))		SR 74	4 (Sen	oia Rd)		Land	rum Rd			Mila	m Rd		
		No	orthbo	und			Sc	outhbo	und			East	bound			West	bound		
Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour A	nalysis	s From	04:00	PM to	05:45 F	PM - P	eak 1	of 1											
Peak Hour fo	or Entir	e Inter	sectio	n Begir	ns at 04	:00 PN	1												
04:00 PM	7	346	31	6	390	38	305	9	5	357	15	23	10	48	53	16	13	82	877
04:15 PM	9	356	28	7	400	46	352	13	10	421	14	21	8	43	49	8	19	76	940
04:30 PM	8	331	26	2	367	49	289	11	13	362	9	20	3	32	57	14	12	83	844
04:45 PM	10	264	31	8	313	55	336	13	14	418	11	15	8	34	53	15	15	83	848
Total Volume	34	1297	116	23	1470	188	1282	46	42	1558	49	79	29	157	212	53	59	324	3509
% App. Total	2.3	88.2	7.9	1.6		12.1	82.3	3	2.7		31.2	50.3	18.5		65.4	16.4	18.2		
PHF	.850	.911	.935	.719	.919	.855	.911	.885	.750	.925	.817	.859	.725	.818	.930	.828	.776	.976	.933
Cars & Buses	34	1263	114	23	1434	188	1260	45	42	1535	48	78	28	154	212	52	59	323	3446
% Cars & Buses	100	97.4	98.3	100	97.6	100	98.3	97.8	100	98.5	98.0	98.7	96.6	98.1	100	98.1	100	99.7	98.2
Trucks	0	34	2	0	36	0	22	1	0	23	1	1	1	3	0	1	0	1	63
% Trucks	0	2.6	1.7	0	2.4	0	1.7	2.2	0	1.5	2.0	1.3	3.4	1.9	0	1.9	0	0.3	1.8

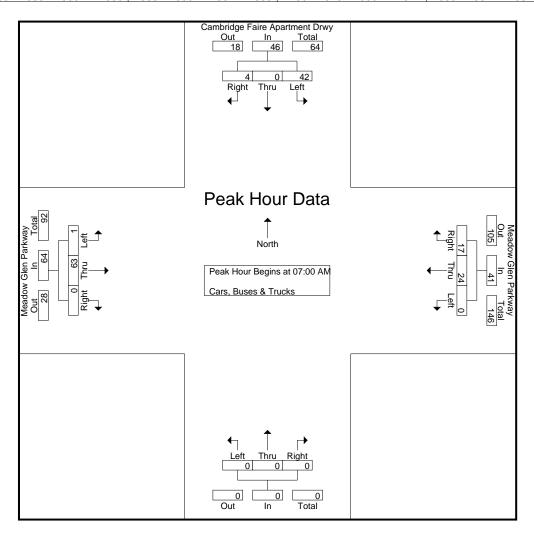
2160 Kingston Court Suite '0' Marietta, GA 30067

TMC Data Meadow Glen Pkwy @ Cambridge Faire

Apartment Drwy 7-9 am | 4-6 pm

File Name : 20240218 Site Code : 20240218 Start Date : 05-16-2024

						Grou	ps Prin	ted- Cars	, Buses	& Truc	cks						
		North	bound		Camb	ridge F D		artment		adow G	len Par bound	kway	Mea		len Par tbound	kway	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
07:00 AM	0	0	0	0	9	0	1	10	1	13	0	14	0	4	4	8	32
07:15 AM	0	0	0	0	8	0	1	9	0	16	0	16	0	6	4	10	35
07:30 AM	0	0	0	0	18	0	1	19	0	17	0	17	0	9	3	12	48
07:45 AM	0	0	0	0	7	0	1	8	0	17	0	17	0	5	6	11	36
Total	0	0	0	0	42	0	4	46	1	63	0	64	0	24	17	41	151
08:00 AM	0	0	0	0	6	0	0	6	1	7	0	8	0	7	3	10	24
08:15 AM	0	0	0	0	6	0	2	8	0	10	0	10	0	7	1	8	26
08:30 AM	0	0	0	0	5	0	0	5	0	8	0	8	0	7	5	12	25
08:45 AM	0	0	0	0	7	0	1	8	3	8	0	11	0	4	4	8	27
Total	0	0	0	0	24	0	3	27	4	33	0	37	0	25	13	38	102
*** BREAK ***																	
04:00 PM	0	0	0	0	7	0	0	7	1	19	0	20	0	7	6	13	40
04:15 PM	0	0	0	0	5	0	1	6	1	12	0	13	0	17	4	21	40
04:30 PM	0	0	0	0	5	0	1	6	1	11	0	12	0	11	13	24	42
04:45 PM	0	0	0	0	7	0	0	7	0	15	0	15	0	13	7	20	42
Total	0	0	0	0	24	0	2	26	3	57	0	60	0	48	30	78	164
05:00 PM	0	0	0	0	5	0	1	6	1	13	0	14	0	7	9	16	36
05:15 PM	0	0	0	0	4	0	0	4	0	18	0	18	0	23	6	29	51
05:30 PM	0	0	0	0	5	0	0	5	1	11	0	12	0	17	15	32	49
05:45 PM	0	0	0	0	7	0	2	9	3	10	0	13	0	17	11_	28	50
Total	0	0	0	0	21	0	3	24	5	52	0	57	0	64	41	105	186
Grand Total	0	0	0	0	111	0	12	123	13	205	0	218	0	161	101	262	603
Apprch %	0	0	0		90.2	0	9.8		6	94	0		0	61.5	38.5		
Total %	0	0	0	0	18.4	0	2	20.4	2.2	34	0	36.2	0	26.7	16.7	43.4	

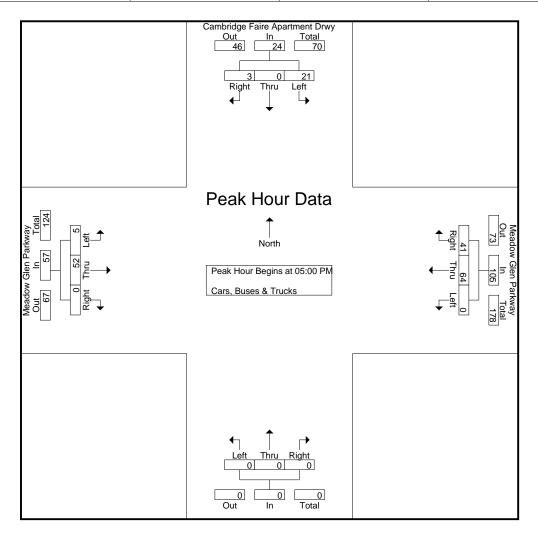

2160 Kingston Court Suite '0' Marietta, GA 30067

TMC Data Meadow Glen Pkwy @ Cambridge Faire

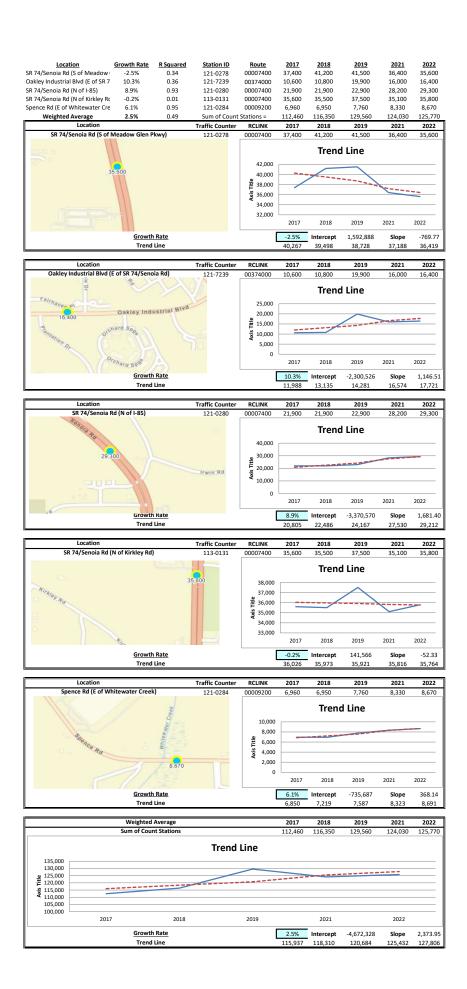
Apartment Drwy 7-9 am | 4-6 pm

File Name : 20240218 Site Code : 20240218 Start Date : 05-16-2024

		North	bound		Camb	Ď	aire Ap rwy nbound	artment	Mea		len Par bound	kway	Mea		len Par	kway	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Ana	alysis Fi	rom 07:	00 AM	to 08:45	AM - Po	eak 1 c	f 1										
Peak Hour for	Entire I	ntersec	tion Be	gins at 0	7:00 AM	1											
07:00 AM	0	0	0	0	9	0	1	10	1	13	0	14	0	4	4	8	32
07:15 AM	0	0	0	0	8	0	1	9	0	16	0	16	0	6	4	10	35
07:30 AM	0	0	0	0	18	0	1	19	0	17	0	17	0	9	3	12	48
07:45 AM	0	0	0	0	7	0	1	8	0	17	0	17	0	5	6	11	36_
Total Volume	0	0	0	0	42	0	4	46	1	63	0	64	0	24	17	41	151
% App. Total	0	0	0		91.3	0	8.7		1.6	98.4	0		0	58.5	41.5		
PHF	.000	.000	.000	.000	.583	.000	1.00	.605	.250	.926	.000	.941	.000	.667	.708	.854	.786


2160 Kingston Court Suite '0' Marietta, GA 30067

TMC Data Meadow Glen Pkwy @ Cambridge Faire


Apartment Drwy 7-9 am | 4-6 pm

File Name : 20240218 Site Code : 20240218 Start Date : 05-16-2024

		North	bound		Camb	Ď	aire Aparwy rwy nbound	artment	Mea		len Par bound	kway	Mea		len Par tbound	kway	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Ana	alysis Fi	rom 04:	00 PM	to 05:45	PM - Po	eak 1 o	f 1										
Peak Hour for	Entire I	ntersec	tion Be	gins at 0	5:00 PM	1											
05:00 PM	0	0	0	0	5	0	1	6	1	13	0	14	0	7	9	16	36
05:15 PM	0	0	0	0	4	0	0	4	0	18	0	18	0	23	6	29	51
05:30 PM	0	0	0	0	5	0	0	5	1	11	0	12	0	17	15	32	49
05:45 PM	0	0	0	0	7	0	2	9	3	10	0	13	0	17	11	28	50
Total Volume	0	0	0	0	21	0	3	24	5	52	0	57	0	64	41	105	186
_ % App. Total	0	0	0		87.5	0	12.5		8.8	91.2	0		0	61	39		
PHF	.000	.000	.000	.000	.750	.000	.375	.667	.417	.722	.000	.792	.000	.696	.683	.820	.912

LINEAR	REGRESSION	OF DAILY	TRAFFIC

EXISTING	G INTERSI	ECTION A	NALYSIS

	۶	→	•	←	•	•	†	<i>></i>	/	ţ	4	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4	7	†	7	*	^	7	7	^	7	
Traffic Volume (vph)	58	12	47	6	13	18	1148	60	63	1250	26	
Future Volume (vph)	58	12	47	6	13	18	1148	60	63	1250	26	
Lane Group Flow (vph)	0	85	48	6	13	18	1171	61	64	1276	27	
Turn Type	Perm	NA	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases		4		8		1	6		5	2		
Permitted Phases	4		8		8	6		6	2		2	
Detector Phase	4	4	8	8	8	1	6	6	5	2	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0	5.0	15.0	15.0	5.0	15.0	15.0	
Minimum Split (s)	48.5	48.5	49.5	49.5	49.5	15.0	30.5	30.5	15.0	31.5	31.5	
Total Split (s)	49.0	49.0	49.0	49.0	49.0	15.0	56.0	56.0	15.0	56.0	56.0	
Total Split (%)	40.8%	40.8%	40.8%	40.8%	40.8%	12.5%	46.7%	46.7%	12.5%	46.7%	46.7%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	
Lead/Lag						Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Min	C-Min	None	C-Min	C-Min	
v/c Ratio		0.57	0.37	0.03	0.06	0.05	0.44	0.05	0.17	0.47	0.02	
Control Delay		60.7	57.4	46.8	0.5	4.4	6.8	2.5	3.7	6.5	0.0	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		60.7	57.4	46.8	0.5	4.4	6.8	2.5	3.7	6.5	0.0	
Queue Length 50th (ft)		57	35	4	0	2	98	0	8	123	0	
Queue Length 95th (ft)		107	72	17	0	m6	202	m10	20	303	0	
Internal Link Dist (ft)		414		332			1348			908		
Turn Bay Length (ft)			125			1000		305	300		170	
Base Capacity (vph)		537	497	688	626	415	2642	1188	419	2736	1262	
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio		0.16	0.10	0.01	0.02	0.04	0.44	0.05	0.15	0.47	0.02	

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 22 (18%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: SR 74 (Senoia Rd) & Meadow Glen Pkwy

A&R Engineering, Inc. Synchro 11 Report 24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA Page 1

	۶	→	•	•	•	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	+	7	ሻ	^	7	7	44	7
Traffic Volume (veh/h)	58	12	14	47	6	13	18	1148	60	63	1250	26
Future Volume (veh/h)	58	12	14	47	6	13	18	1148	60	63	1250	26
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1900	1885	1900	1841	1826	1856	1811	1841
Adj Flow Rate, veh/h	59	12	14	48	6	0	18	1171	0	64	1276	0
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Percent Heavy Veh, %	0	0	0	0	0	1	0	4	5	3	6	4
Cap, veh/h	125	20	19	169	141		373	2628		423	2648	
Arrive On Green	0.07	0.07	0.07	0.07	0.07	0.00	0.02	0.75	0.00	0.04	0.77	0.00
Sat Flow, veh/h	1004	272	251	1407	1900	1598	1810	3497	1547	1767	3441	1560
Grp Volume(v), veh/h	85	0	0	48	6	0	18	1171	0	64	1276	0
Grp Sat Flow(s),veh/h/ln	1527	0	0	1407	1900	1598	1810	1749	1547	1767	1721	1560
Q Serve(g_s), s	6.1	0.0	0.0	0.0	0.4	0.0	0.3	15.0	0.0	1.0	16.3	0.0
Cycle Q Clear(g_c), s	6.5	0.0	0.0	3.7	0.4	0.0	0.3	15.0	0.0	1.0	16.3	0.0
Prop In Lane	0.69	_	0.16	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	164	0	0	169	141		373	2628		423	2648	
V/C Ratio(X)	0.52	0.00	0.00	0.28	0.04		0.05	0.45		0.15	0.48	
Avail Cap(c_a), veh/h	600	0	0	575	689	4.00	482	2628	4.00	498	2648	4.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	54.4	0.0	0.0	53.1	51.6	0.0	4.1	5.6	0.0	3.9	5.1	0.0
Incr Delay (d2), s/veh	2.5	0.0	0.0	0.9	0.1	0.0	0.1	0.5	0.0	0.2	0.6	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.7	0.0	0.0	1.4	0.2	0.0	0.1	4.0	0.0	0.2	4.0	0.0
Unsig. Movement Delay, s/veh		0.0	0.0	E40	E4 7	0.0	1.1	6.4	0.0	4.0	F 7	0.0
LnGrp Delay(d),s/veh	56.9	0.0	0.0	54.0	51.7	0.0	4.1	6.1	0.0	4.0	5.7	0.0
LnGrp LOS	<u>E</u>	A	A	D	D 54		A	A 4400		A	A 4240	
Approach Vol, veh/h		85			54			1189			1340	
Approach LOC		56.9			53.8			6.1			5.6	
Approach LOS		Е			D			А			Α	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.8	97.8		14.4	9.9	95.7		14.4				
Change Period (Y+Rc), s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Setting (Gmax), s	9.5	50.5		43.5	9.5	50.5		43.5				
Max Q Clear Time (g_c+l1), s	2.3	18.3		8.5	3.0	17.0		5.7				
Green Ext Time (p_c), s	0.0	18.6		0.5	0.0	17.1		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			8.4									
HCM 6th LOS			Α									

User approved pedestrian interval to be less than phase max green.

Unsignalized Delay for [NBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Synchro 11 Report A&R Engineering, Inc. 24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA Page 2

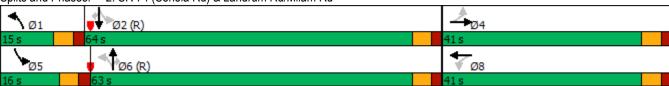
	۶	→	•	←	4	†	<i>></i>	/	+	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		4	7	^	7	ř	† †	7	
Traffic Volume (vph)	27	40	172	39	43	1177	143	141	1205	17	
Future Volume (vph)	27	40	172	39	43	1177	143	141	1205	17	
Lane Group Flow (vph)	0	100	0	323	48	1308	159	157	1339	19	
Turn Type	Perm	NA	Perm	NA	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases		4		8	1	6		5	2		
Permitted Phases	4		8		6		6	2		2	
Detector Phase	4	4	8	8	1	6	6	5	2	2	
Switch Phase											
Minimum Initial (s)	6.0	6.0	6.0	6.0	5.0	15.0	15.0	5.0	15.0	15.0	
Minimum Split (s)	31.5	31.5	30.5	30.5	15.0	28.5	28.5	15.0	28.5	28.5	
Total Split (s)	41.0	41.0	41.0	41.0	15.0	63.0	63.0	16.0	64.0	64.0	
Total Split (%)	34.2%	34.2%	34.2%	34.2%	12.5%	52.5%	52.5%	13.3%	53.3%	53.3%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.5		5.5	5.5	5.5	5.5	5.5	5.5	5.5	
Lead/Lag					Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Min	C-Min	None	C-Min	C-Min	
v/c Ratio		0.25		0.89	0.22	0.72	0.17	0.63	0.69	0.02	
Control Delay		30.1		66.1	11.5	25.5	4.6	31.8	18.5	0.1	
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		30.1		66.1	11.5	25.5	4.6	31.8	18.5	0.1	
Queue Length 50th (ft)		51		226	13	407	9	47	268	0	
Queue Length 95th (ft)		95		#358	30	531	46	146	312	m0	
Internal Link Dist (ft)		747		818		1030			1305		
Turn Bay Length (ft)					345		230	350		200	
Base Capacity (vph)		462		419	262	1821	919	269	1937	851	
Starvation Cap Reductn		0		0	0	0	0	0	0	0	
Spillback Cap Reductn		0		0	0	0	0	0	0	0	
Storage Cap Reductn		0		0	0	0	0	0	0	0	
Reduced v/c Ratio		0.22		0.77	0.18	0.72	0.17	0.58	0.69	0.02	

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 90


Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: SR 74 (Senoia Rd) & Landrum Rd/Milam Rd

A&R Engineering, Inc.

Synchro 11 Report 24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA Page 3

	ၨ	→	•	•	←	•	•	†	~	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		Ţ	^	7	7	^	7
Traffic Volume (veh/h)	27	40	23	172	39	80	43	1177	143	141	1205	17
Future Volume (veh/h)	27	40	23	172	39	80	43	1177	143	141	1205	17
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1841	1900	1841	1885	1900	1885	1870	1826	1900	1900	1811	1722
Adj Flow Rate, veh/h	30	44	0	191	43	89	48	1308	159	157	1339	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	4	0	4	1	0	1	2	5	0	0	6	12
Cap, veh/h	167	230		258	47	98	260	2012	934	274	2062	
Arrive On Green	0.23	0.23	0.00	0.23	0.23	0.23	0.03	0.58	0.58	0.05	0.60	0.00
Sat Flow, veh/h	544	999	0	912	205	425	1781	3469	1610	1810	3441	1459
Grp Volume(v), veh/h	74	0	0	323	0	0	48	1308	159	157	1339	0
Grp Sat Flow(s), veh/h/ln	1543	0	0	1542	0	0	1781	1735	1610	1810	1721	1459
Q Serve(g_s), s	0.0	0.0	0.0	20.4	0.0	0.0	1.3	30.5	5.5	4.2	30.6	0.0
Cycle Q Clear(g_c), s	4.0	0.0	0.0	24.4	0.0	0.0	1.3	30.5	5.5	4.2	30.6	0.0
Prop In Lane	0.41	0.0	0.00	0.59	0.0	0.28	1.00	00.0	1.00	1.00	00.0	1.00
Lane Grp Cap(c), veh/h	397	0	0.00	403	0	0.20	260	2012	934	274	2062	1.00
V/C Ratio(X)	0.19	0.00		0.80	0.00	0.00	0.18	0.65	0.17	0.57	0.65	
Avail Cap(c_a), veh/h	502	0		501	0	0	341	2012	934	338	2062	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	37.0	0.0	0.0	44.6	0.0	0.0	13.0	17.0	11.7	15.7	15.8	0.0
Incr Delay (d2), s/veh	0.2	0.0	0.0	7.4	0.0	0.0	0.3	1.6	0.4	1.9	1.6	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.8	0.0	0.0	10.0	0.0	0.0	0.5	11.0	1.9	1.6	10.7	0.0
Unsig. Movement Delay, s/veh		0.0	0.0	10.0	0.0	0.0	0.0	11.0	1.0	1.0	10.7	0.0
LnGrp Delay(d),s/veh	37.2	0.0	0.0	52.0	0.0	0.0	13.4	18.6	12.1	17.5	17.4	0.0
LnGrp LOS	D	Α	0.0	D	Α	A	В	В	В	В	В	0.0
Approach Vol, veh/h		74			323			1515			1496	
Approach Delay, s/veh		37.2			52.0			17.8			17.4	
Approach LOS		57.2 D			52.0 D			17.0 B			В	
Approach EOS					D						Ь	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	9.5	77.4		33.1	11.8	75.1		33.1				
Change Period (Y+Rc), s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Setting (Gmax), s	9.5	58.5		35.5	10.5	57.5		35.5				
Max Q Clear Time (g_c+l1), s	3.3	32.6		6.0	6.2	32.5		26.4				
Green Ext Time (p_c), s	0.0	16.9		0.3	0.1	17.2		1.3				
Intersection Summary												
HCM 6th Ctrl Delay			21.3									
HCM 6th LOS			C									
Notes												

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection						
Int Delay, s/veh	2.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	T T	<u></u>	<u>₩</u>	WDK 7	SBL ₩	אומט
Traffic Vol, veh/h	<u>ግ</u>	T 63	T 24	1 7	4 2	4
Future Vol, veh/h	1	63	24	17	42	4
Conflicting Peds, #/hr	0	03	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	riee -	None	Stop -	None
Storage Length	105	None -	-	165	0	NOHE -
Veh in Median Storage				100		
		0	0		0	-
Grade, %	70			70		70
Peak Hour Factor	79	79	79	79	79	79
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	1	80	30	22	53	5
Major/Minor N	Major1	N	Major2		Minor2	
Conflicting Flow All	52	0	-	0	112	30
Stage 1	-	-	_	-	30	-
Stage 2	_	_	_	_	82	_
Critical Hdwy	4.1	_	_	_	6.4	6.2
Critical Hdwy Stg 1	T. I	_	_	_	5.4	- 0.2
Critical Hdwy Stg 2	_	_	_	_	5.4	_
Follow-up Hdwy	2.2	_	_	_	3.5	3.3
Pot Cap-1 Maneuver	1567			_	890	1050
Stage 1	1001	_		_	998	-
Stage 2	-	<u>-</u>	-	_	946	
Platoon blocked, %	_	-	_	_	340	-
	1567	-	-		000	1050
Mov Cap-1 Maneuver	1567	-	-	-	889	
Mov Cap-2 Maneuver	-	-	-	-	889	-
Stage 1	-	-	-	-	997	-
Stage 2	-	-	-	-	946	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		9.3	
HCM LOS	U. I		U		9.5 A	
I IOWI LOG					А	
Minor Lane/Major Mvm	it	EBL	EBT	WBT	WBR S	
Capacity (veh/h)		1567	-	-	-	
HCM Lane V/C Ratio		0.001	-	-	-	0.065
HCM Control Delay (s)		7.3	-	-	-	9.3
HCM Lane LOS		Α	-	-	-	Α
HCM 95th %tile Q(veh))	0	-	-	-	0.2

Synchro 11 Report Page 5 A&R Engineering, Inc. 24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA

Intersection						
Int Delay, s/veh	0.3					
		EDT	WDT	WDD	CDI	CDD
Movement Configurations	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	•	4	^		Y	0
Traffic Vol, veh/h	2	105	41	2	2	2
Future Vol, veh/h	2	105	41	2	2	2
Conflicting Peds, #/hr	0	_ 0	_ 0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	2	114	45	2	2	2
Major/Minor	laiar1	N	Major	N	Minor	
	lajor1		Major2		Minor2	40
Conflicting Flow All	47	0	-	0	164	46
Stage 1	-	-	-	-	46	-
Stage 2	-	-	-	-	118	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1560	-	-	-	827	1023
Stage 1	-	-	-	-	976	-
Stage 2	-	-	-	-	907	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1560	-	_	-	826	1023
Mov Cap-2 Maneuver	_	_	-	_	826	-
Stage 1	_	_	_	_	975	_
Stage 2	_	_	_	_	907	_
Olago 2					001	
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		9	
HCM LOS					Α	
		EBL	EBT	WBT	WBR	QRI n1
Minor Long/Major Mumt		CDL	EDI	VVDI		
Minor Lane/Major Mvmt		4500				414
Capacity (veh/h)		1560	-	-	-	
Capacity (veh/h) HCM Lane V/C Ratio		0.001	-	-	-	0.005
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		0.001 7.3	- 0	-	-	0.005
Capacity (veh/h) HCM Lane V/C Ratio		0.001	-	-	-	0.005

	۶	→	•	←	•	4	†	/	>	ţ	4	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4	ሻ	↑	7	ሻ	^	7	ሻ	^	7	
Traffic Volume (vph)	92	20	58	16	51	61	1257	56	108	1422	83	
Future Volume (vph)	92	20	58	16	51	61	1257	56	108	1422	83	
Lane Group Flow (vph)	0	148	62	17	54	65	1337	60	115	1513	88	
Turn Type	Perm	NA	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases		4		8		1	6		5	2		
Permitted Phases	4		8		8	6		6	2		2	
Detector Phase	4	4	8	8	8	1	6	6	5	2	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0	5.0	15.0	15.0	5.0	15.0	15.0	
Minimum Split (s)	48.5	48.5	49.5	49.5	49.5	15.0	30.5	30.5	15.0	31.5	31.5	
Total Split (s)	50.0	50.0	50.0	50.0	50.0	15.0	55.0	55.0	15.0	55.0	55.0	
Total Split (%)	41.7%	41.7%	41.7%	41.7%	41.7%	12.5%	45.8%	45.8%	12.5%	45.8%	45.8%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	
Lead/Lag						Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Min	C-Min	None	C-Min	C-Min	
v/c Ratio		0.69	0.36	0.06	0.20	0.26	0.58	0.06	0.40	0.62	0.08	
Control Delay		61.4	50.9	42.2	6.9	5.6	7.9	1.1	8.2	13.5	3.1	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		61.4	50.9	42.2	6.9	5.6	7.9	1.1	8.2	13.5	3.1	
Queue Length 50th (ft)		102	44	12	0	0	64	0	18	324	4	
Queue Length 95th (ft)		163	83	31	22	m3	m620	m7	43	505	26	
Internal Link Dist (ft)		414		332			1348			908		
Turn Bay Length (ft)			125			1000		305	300		170	
Base Capacity (vph)		549	460	704	590	295	2320	1083	316	2425	1118	
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio		0.27	0.13	0.02	0.09	0.22	0.58	0.06	0.36	0.62	0.08	

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 71 (59%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: SR 74 (Senoia Rd) & Meadow Glen Pkwy

Synchro 11 Report A&R Engineering, Inc. 24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA Page 1

	۶	→	•	•	←	•	4	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		Ť	^	7	7	^	7	Ť	^	7
Traffic Volume (veh/h)	92	20	27	58	16	51	61	1257	56	108	1422	83
Future Volume (veh/h)	92	20	27	58	16	51	61	1257	56	108	1422	83
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1870	1900	1752	1900	1870	1900	1811	1870	1885
Adj Flow Rate, veh/h	98	21	29	62	17	0	65	1337	0	115	1513	0
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	0	0	0	2	0	10	0	2	0	6	2	1
Cap, veh/h	165	30	35	219	235		296	2481		335	2495	
Arrive On Green	0.12	0.12	0.12	0.12	0.12	0.00	0.04	0.70	0.00	0.04	0.70	0.00
Sat Flow, veh/h	934	242	287	1355	1900	1485	1810	3554	1610	1725	3554	1598
Grp Volume(v), veh/h	148	0	0	62	17	0	65	1337	0	115	1513	0
Grp Sat Flow(s), veh/h/ln	1463	0	0	1355	1900	1485	1810	1777	1610	1725	1777	1598
Q Serve(g_s), s	11.0	0.0	0.0	0.0	0.9	0.0	1.2	21.8	0.0	2.2	26.5	0.0
Cycle Q Clear(g_c), s	11.9	0.0	0.0	5.4	0.9	0.0	1.2	21.8	0.0	2.2	26.5	0.0
Prop In Lane	0.66	0.0	0.20	1.00	0.0	1.00	1.00	21.0	1.00	1.00	20.0	1.00
Lane Grp Cap(c), veh/h	231	0	0.20	219	235	1.00	296	2481	1.00	335	2495	1.00
V/C Ratio(X)	0.64	0.00	0.00	0.28	0.07		0.22	0.54		0.34	0.61	
Avail Cap(c_a), veh/h	603	0.00	0.00	554	705		372	2481		401	2495	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	51.5	0.0	0.0	48.5	46.5	0.0	7.8	8.8	0.0	7.2	9.3	0.0
Incr Delay (d2), s/veh	3.0	0.0	0.0	0.7	0.1	0.0	0.4	0.8	0.0	0.6	1.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.6	0.0	0.0	1.8	0.5	0.0	0.4	6.8	0.0	0.6	8.2	0.0
Unsig. Movement Delay, s/veh		0.0	0.0	1.0	0.0	0.0	0.4	0.0	0.0	0.0	0.2	0.0
LnGrp Delay(d),s/veh	54.5	0.0	0.0	49.2	46.6	0.0	8.2	9.6	0.0	7.8	10.4	0.0
LnGrp LOS	04.5 D	Α	Α	49.2 D	40.0 D	0.0	0.2 A	9.0 A	0.0	7.0 A	10.4 B	0.0
· ·	<u> </u>		^	U			^			^		
Approach Vol, veh/h		148			79			1402			1628	
Approach Delay, s/veh		54.5			48.6			9.5			10.2	
Approach LOS		D			D			А			В	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	9.9	89.8		20.3	10.4	89.3		20.3				
Change Period (Y+Rc), s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Setting (Gmax), s	9.5	49.5		44.5	9.5	49.5		44.5				
Max Q Clear Time (g_c+l1), s	3.2	28.5		13.9	4.2	23.8		7.4				
Green Ext Time (p_c), s	0.0	16.0		0.9	0.1	16.8		0.3				
Intersection Summary												
HCM 6th Ctrl Delay			12.9									
HCM 6th LOS			В									
Notes												

Unsignalized Delay for [NBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

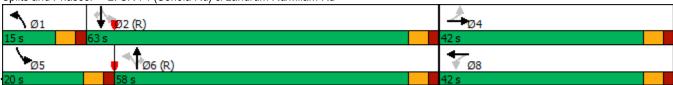
	۶	→	•	←	4	†	<i>></i>	/	Ţ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		4	7	^	7	*	^	7	
Traffic Volume (vph)	49	79	212	53	57	1297	116	230	1282	46	
Future Volume (vph)	49	79	212	53	57	1297	116	230	1282	46	
Lane Group Flow (vph)	0	169	0	348	61	1395	125	247	1378	49	
Turn Type	Perm	NA	Perm	NA	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases		4		8	1	6		5	2		
Permitted Phases	4		8		6		6	2		2	
Detector Phase	4	4	8	8	1	6	6	5	2	2	
Switch Phase											
Minimum Initial (s)	6.0	6.0	6.0	6.0	5.0	15.0	15.0	5.0	15.0	15.0	
Minimum Split (s)	31.5	31.5	30.5	30.5	15.0	28.5	28.5	15.0	28.5	28.5	
Total Split (s)	42.0	42.0	42.0	42.0	15.0	58.0	58.0	20.0	63.0	63.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	12.5%	48.3%	48.3%	16.7%	52.5%	52.5%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.5		5.5	5.5	5.5	5.5	5.5	5.5	5.5	
Lead/Lag					Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Min	C-Min	None	C-Min	C-Min	
v/c Ratio		0.38		0.95	0.31	0.87	0.16	0.91	0.74	0.06	
Control Delay		34.0		76.7	15.0	37.7	7.1	57.3	26.4	4.0	
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		34.0		76.7	15.0	37.7	7.1	57.3	26.4	4.0	
Queue Length 50th (ft)		96		253	18	521	14	139	534	6	
Queue Length 95th (ft)		160		#437	36	#650	50	#282	642	m13	
Internal Link Dist (ft)		747		818		1030			1305		
Turn Bay Length (ft)					345		230	350		200	
Base Capacity (vph)		466		381	233	1595	770	281	1873	872	
Starvation Cap Reductn		0		0	0	0	0	0	0	0	
Spillback Cap Reductn		0		0	0	0	0	0	0	0	
Storage Cap Reductn		0		0	0	0	0	0	0	0	
Reduced v/c Ratio		0.36		0.91	0.26	0.87	0.16	0.88	0.74	0.06	

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 90


Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: SR 74 (Senoia Rd) & Landrum Rd/Milam Rd

A&R Engineering, Inc.

Synchro 11 Report

24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA

	۶	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	^	7	ሻ	^	7
Traffic Volume (veh/h)	49	79	29	212	53	59	57	1297	116	230	1282	46
Future Volume (veh/h)	49	79	29	212	53	59	57	1297	116	230	1282	46
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1885	1856	1900	1870	1900	1900	1856	1870	1900	1870	1870
Adj Flow Rate, veh/h	53	85	0	228	57	63	61	1395	125	247	1378	0
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	2	1	3	0	2	0	0	3	2	0	2	2
Cap, veh/h	188	285		295	61	68	236	1801	810	277	1982	
Arrive On Green	0.27	0.27	0.00	0.27	0.27	0.27	0.04	0.51	0.51	0.08	0.56	0.00
Sat Flow, veh/h	543	1059	0	913	228	252	1810	3526	1585	1810	3554	1585
Grp Volume(v), veh/h	138	0	0	348	0	0	61	1395	125	247	1378	0
Grp Sat Flow(s), veh/h/ln	1603	0	0	1394	0	0	1810	1763	1585	1810	1777	1585
Q Serve(g_s), s	0.0	0.0	0.0	21.5	0.0	0.0	1.9	38.4	5.0	7.7	33.6	0.0
Cycle Q Clear(g_c), s	7.8	0.0	0.0	29.3	0.0	0.0	1.9	38.4	5.0	7.7	33.6	0.0
Prop In Lane	0.38	0.0	0.00	0.66	0.0	0.18	1.00	00.1	1.00	1.00	00.0	1.00
Lane Grp Cap(c), veh/h	472	0	0.00	424	0	0.10	236	1801	810	277	1982	1.00
V/C Ratio(X)	0.29	0.00		0.82	0.00	0.00	0.26	0.77	0.15	0.89	0.70	
Avail Cap(c_a), veh/h	529	0.00		475	0.00	0.00	314	1801	810	345	1982	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	34.8	0.0	0.0	43.1	0.0	0.0	16.6	23.8	15.6	25.0	19.2	0.0
Incr Delay (d2), s/veh	0.3	0.0	0.0	10.0	0.0	0.0	0.6	3.3	0.4	20.9	2.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.2	0.0	0.0	11.1	0.0	0.0	0.7	15.0	1.8	5.0	12.6	0.0
Unsig. Movement Delay, s/veh		0.0	0.0	11.1	0.0	0.0	0.7	13.0	1.0	5.0	12.0	0.0
	35.1	0.0	0.0	53.1	0.0	0.0	17.2	27.1	16.0	45.9	21.2	0.0
LnGrp Delay(d),s/veh	33.1 D		0.0	55.1 D			17.2 B	27.1 C			21.2 C	0.0
LnGrp LOS	U	A 420		<u> </u>	A	A	<u>D</u>		В	D		
Approach Vol, veh/h		138			348			1581			1625	
Approach Delay, s/veh		35.1			53.1			25.8			25.0	
Approach LOS		D			D			С			С	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	9.8	72.4		37.7	15.5	66.8		37.7				
Change Period (Y+Rc), s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Setting (Gmax), s	9.5	57.5		36.5	14.5	52.5		36.5				
Max Q Clear Time (g_c+I1), s	3.9	35.6		9.8	9.7	40.4		31.3				
Green Ext Time (p_c), s	0.0	15.4		0.7	0.3	9.8		0.9				
Intersection Summary												
HCM 6th Ctrl Delay			28.4									
HCM 6th LOS			С									
Notes												

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

A&R Engineering, Inc. Synchro 11 Report 24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA Page 4

Intersection						
Int Delay, s/veh	1.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሻ	↑	↑	1	¥	
Traffic Vol, veh/h	5	52	64	41	21	3
Future Vol, veh/h	5	52	64	41	21	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	105	-	_	165	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	_	0	_
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	0	0	0	0	0	0
Mymt Flow	5	57	70	45	23	3
IVIVIIIL I IOW	J	JI	10	70	20	J
	Major1	N	Major2	N	Minor2	
Conflicting Flow All	115	0	-	0	137	70
Stage 1	-	-	-	-	70	-
Stage 2	-	-	-	-	67	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1487	-	_	-	861	998
Stage 1	-	-	-	-	958	-
Stage 2	_	_	_	-	961	_
Platoon blocked, %		_	_	_		
Mov Cap-1 Maneuver	1487	_	_	-	858	998
Mov Cap-1 Maneuver	-	<u>-</u>	_	_	858	-
Stage 1	_			_	955	_
Stage 2	_	_	_	_	961	_
Staye 2	_	<u>-</u>	_	<u>-</u>	<i>3</i> 0 i	<u>-</u>
Approach	EB		WB		SB	
HCM Control Delay, s	0.7		0		9.3	
HCM LOS					Α	
				14/5-	14/5-	0DL (
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		1487	-	-	-	873
HCM Lane V/C Ratio		0.004	-	-	-	0.03
HCM Control Delay (s)		7.4	-	-	-	9.3
HCM Lane LOS		Α	-	-	-	Α
HCM 95th %tile Q(veh)	0	-	-	-	0.1

Synchro 11 Report Page 5 A&R Engineering, Inc. 24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA

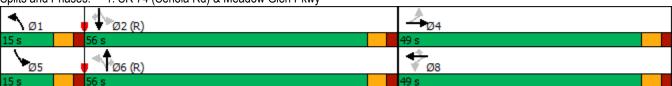
Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1≯	WDIX	Y	ODIT
Traffic Vol, veh/h	3	73	105	3	3	3
Future Vol, veh/h	3	73	105	3	3	3
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	riee -		riee -	None		None
	-		-		-	
Storage Length	-	-	-	-	0	-
Veh in Median Storag	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	3	79	114	3	3	3
Major/Minor	Major1	N	Major2	ı	Minor2	
Conflicting Flow All	117	0	-	0	201	116
Stage 1		_	_	-	116	-
Stage 2	_	_	_	_	85	_
Critical Hdwy	4.12	_	_	_	6.42	6.22
Critical Hdwy Stg 1	4.12	_	_	_	5.42	0.22
		-	-		5.42	
Critical Hdwy Stg 2	- 0.040		-	-		2 240
Follow-up Hdwy	2.218	-	-		3.518	
Pot Cap-1 Maneuver	1471	-	-	-	788	936
Stage 1	-	-	-	-	909	-
Stage 2	-	-	-	-	938	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-	-	-	786	936
Mov Cap-2 Maneuver		-	-	-	786	-
Stage 1	-	-	-	-	907	-
Stage 2	-	-	-	-	938	-
Annroach	EB		WB		SB	
Approach						
HCM Control Delay, s	0.3		0		9.2	
HCM LOS					Α	
Minor Lane/Major Mvi	mt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1471				854
HCM Lane V/C Ratio		0.002	_	<u>-</u>		0.008
HCM Control Delay (s	.)	7.5	0		<u>-</u>	9.2
HCM Lane LOS	9)					
	h)	A	Α	-	-	A
HCM 95th %tile Q(vel	1)	0	-	-	-	0

FUTURE "NO-BUILD" INTERSECTION ANALYSIS

	۶	→	•	←	*	4	†	/	-	ţ	4	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4	ሻ	↑	7	ሻ	^	7	7	^	7	
Traffic Volume (vph)	61	13	50	6	14	19	1217	64	67	1325	28	
Future Volume (vph)	61	13	50	6	14	19	1217	64	67	1325	28	
Lane Group Flow (vph)	0	90	51	6	14	19	1242	65	68	1352	29	
Turn Type	Perm	NA	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases		4		8		1	6		5	2		
Permitted Phases	4		8		8	6		6	2		2	
Detector Phase	4	4	8	8	8	1	6	6	5	2	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0	5.0	15.0	15.0	5.0	15.0	15.0	
Minimum Split (s)	48.5	48.5	49.5	49.5	49.5	15.0	30.5	30.5	15.0	31.5	31.5	
Total Split (s)	49.0	49.0	49.0	49.0	49.0	15.0	56.0	56.0	15.0	56.0	56.0	
Total Split (%)	40.8%	40.8%	40.8%	40.8%	40.8%	12.5%	46.7%	46.7%	12.5%	46.7%	46.7%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	
Lead/Lag						Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Min	C-Min	None	C-Min	C-Min	
v/c Ratio		0.59	0.38	0.03	0.06	0.06	0.49	0.06	0.20	0.52	0.02	
Control Delay		61.2	57.3	46.3	0.6	2.5	3.7	0.5	4.1	7.4	0.0	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		61.2	57.3	46.3	0.6	2.5	3.7	0.5	4.1	7.4	0.0	
Queue Length 50th (ft)		61	38	4	0	1	62	0	8	137	0	
Queue Length 95th (ft)		112	76	17	0	m3	112	m1	21	338	0	
Internal Link Dist (ft)		414		332			1348			908		
Turn Bay Length (ft)			125			1000		305	300		170	
Base Capacity (vph)		537	491	688	626	378	2528	1139	383	2625	1214	
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio		0.17	0.10	0.01	0.02	0.05	0.49	0.06	0.18	0.52	0.02	

Cycle Length: 120

Actuated Cycle Length: 120


Offset: 35 (29%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: SR 74 (Senoia Rd) & Meadow Glen Pkwy

A&R Engineering, Inc. Synchro 11 Report 24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA Page 1

	•	→	•	•	←	•	4	†	~	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	↑	7	ሻ	^	7	ሻ	^	7
Traffic Volume (veh/h)	61	13	15	50	6	14	19	1217	64	67	1325	28
Future Volume (veh/h)	61	13	15	50	6	14	19	1217	64	67	1325	28
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1000	No	1000	1000	No	100=	1000	No	1000	10-0	No	1011
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1900	1885	1900	1841	1826	1856	1811	1841
Adj Flow Rate, veh/h	62	13	15	51	6	0	19	1242	0	68	1352	0
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Percent Heavy Veh, %	0	0	0	0	0	1	0	4	5	3	6	4
Cap, veh/h	128	21	20	173	148	0.00	347	2614	0.00	396	2633	0.00
Arrive On Green	0.08	0.08	0.08	0.08	0.08	0.00	0.02	0.75	0.00	0.04	0.77	0.00
Sat Flow, veh/h	998	276	255	1404	1900	1598	1810	3497	1547	1767	3441	1560
Grp Volume(v), veh/h	90	0	0	51	6	0	19	1242	0	68	1352	0
Grp Sat Flow(s),veh/h/ln	1528	0	0	1404	1900	1598	1810	1749	1547	1767	1721	1560
Q Serve(g_s), s	6.5	0.0	0.0	0.0	0.4	0.0	0.3	16.7	0.0	1.0	18.2	0.0
Cycle Q Clear(g_c), s	6.9	0.0	0.0	4.0	0.4	0.0	0.3	16.7	0.0	1.0	18.2	0.0
Prop In Lane	0.69	•	0.17	1.00	4.40	1.00	1.00	0044	1.00	1.00	0000	1.00
Lane Grp Cap(c), veh/h	170	0	0	173	148		347	2614		396	2633	
V/C Ratio(X)	0.53	0.00	0.00	0.30	0.04		0.05	0.48		0.17	0.51	
Avail Cap(c_a), veh/h	601	0	0	572	689	4.00	454	2614	4.00	470	2633	4.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	54.2 2.6	0.0	0.0	52.9	51.2	0.0	4.4	5.9	0.0	4.3	5.5	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.9	0.1	0.0	0.1	0.6	0.0	0.2	0.7	0.0
Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/ln	2.8	0.0	0.0	0.0 1.5	0.0	0.0	0.0	4.5	0.0	0.0	0.0 4.5	0.0
Unsig. Movement Delay, s/veh		0.0	0.0	1.5	0.2	0.0	0.1	4.5	0.0	0.2	4.5	0.0
LnGrp Delay(d),s/veh	56.7	0.0	0.0	53.8	51.3	0.0	4.5	6.6	0.0	4.5	6.2	0.0
LnGrp LOS	50.7 E	0.0 A	Α	55.0 D	51.5 D	0.0	4.5 A	Α	0.0	4.5 A	0.2 A	0.0
	<u> </u>	90		U	57			1261			1420	
Approach Vol, veh/h Approach Delay, s/veh		56.7			53.5			6.5			6.1	
Approach LOS		50.7 E			55.5 D			0.5 A			Α	
Approach LOS					D						А	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.8	97.3		14.8	10.0	95.2		14.8				
Change Period (Y+Rc), s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Setting (Gmax), s	9.5	50.5		43.5	9.5	50.5		43.5				
Max Q Clear Time (g_c+l1), s	2.3	20.2		8.9	3.0	18.7		6.0				
Green Ext Time (p_c), s	0.0	19.0		0.5	0.1	17.8		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			8.9									
HCM 6th LOS			Α									

Notes

User approved pedestrian interval to be less than phase max green.

Unsignalized Delay for [NBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

2. 31\ 74 (3e1101a 1	(u) & La	anunun	I I TU/IV	ıllallı I	\u						00/20/2024
	۶	→	•	+	1	†	<i>></i>	/	↓	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		4	ሻ	^	7	ሻ	^	7	
Traffic Volume (vph)	29	42	182	41	46	1248	152	150	1277	18	
Future Volume (vph)	29	42	182	41	46	1248	152	150	1277	18	
Lane Group Flow (vph)	0	106	0	342	51	1387	169	167	1419	20	
Turn Type	Perm	NA	Perm	NA	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases		4		8	1	6		5	2		
Permitted Phases	4		8		6		6	2		2	
Detector Phase	4	4	8	8	1	6	6	5	2	2	
Switch Phase											
Minimum Initial (s)	6.0	6.0	6.0	6.0	5.0	15.0	15.0	5.0	15.0	15.0	
Minimum Split (s)	31.5	31.5	30.5	30.5	15.0	28.5	28.5	15.0	28.5	28.5	
Total Split (s)	41.0	41.0	41.0	41.0	15.0	63.0	63.0	16.0	64.0	64.0	
Total Split (%)	34.2%	34.2%	34.2%	34.2%	12.5%	52.5%	52.5%	13.3%	53.3%	53.3%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.5		5.5	5.5	5.5	5.5	5.5	5.5	5.5	
Lead/Lag					Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Min	C-Min	None	C-Min	C-Min	
v/c Ratio		0.26		0.91	0.26	0.79	0.19	0.72	0.75	0.02	
Control Delay		30.0		68.7	12.8	28.9	5.1	41.1	25.7	0.7	
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		30.0		68.7	12.8	28.9	5.1	41.1	25.7	0.7	
Queue Length 50th (ft)		53		238	15	480	13	76	347	0	
Queue Length 95th (ft)		101		#395	31	583	51	#182	498	m1	
Internal Link Dist (ft)		747		818		1030			1305		
Turn Bay Length (ft)					345		230	350		200	
Base Capacity (vph)		459		415	235	1764	894	242	1897	835	
Starvation Cap Reductn		0		0	0	0	0	0	0	0	
Spillback Cap Reductn		0		0	0	0	0	0	0	0	
Storage Cap Reductn		0		0	0	0	0	0	0	0	

Cycle Length: 120

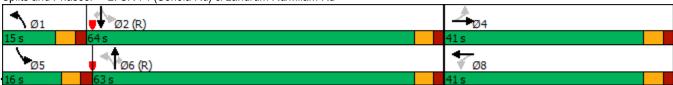
Reduced v/c Ratio

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

0.23

Natural Cycle: 90


Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: SR 74 (Senoia Rd) & Landrum Rd/Milam Rd

0.82

0.22

0.79

0.19

0.69

0.75

0.02

A&R Engineering, Inc.

Synchro 11 Report

24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA

	۶	→	•	•	←	•	4	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	^	7	ሻ	^↑	7
Traffic Volume (veh/h)	29	42	24	182	41	85	46	1248	152	150	1277	18
Future Volume (veh/h)	29	42	24	182	41	85	46	1248	152	150	1277	18
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1841	1900	1841	1885	1900	1885	1870	1826	1900	1900	1811	1722
Adj Flow Rate, veh/h	32	47	0	202	46	94	51	1387	169	167	1419	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	4	0	4	1	0	1	2	5	0	0	6	12
Cap, veh/h	175	241		268	50	102	232	1954	907	254	2015	
Arrive On Green	0.24	0.24	0.00	0.24	0.24	0.24	0.03	0.56	0.56	0.06	0.59	0.00
Sat Flow, veh/h	546	993	0	906	206	421	1781	3469	1610	1810	3441	1459
Grp Volume(v), veh/h	79	0	0	342	0	0	51	1387	169	167	1419	0
Grp Sat Flow(s),veh/h/ln	1538	0	0	1533	0	0	1781	1735	1610	1810	1721	1459
Q Serve(g_s), s	0.0	0.0	0.0	21.7	0.0	0.0	1.4	34.9	6.1	4.6	34.9	0.0
Cycle Q Clear(g_c), s	4.2	0.0	0.0	26.0	0.0	0.0	1.4	34.9	6.1	4.6	34.9	0.0
Prop In Lane	0.41		0.00	0.59		0.27	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	416	0		420	0	0	232	1954	907	254	2015	
V/C Ratio(X)	0.19	0.00		0.81	0.00	0.00	0.22	0.71	0.19	0.66	0.70	
Avail Cap(c_a), veh/h	499	0		499	0	0	312	1954	907	310	2015	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	35.9	0.0	0.0	43.9	0.0	0.0	15.0	19.1	12.8	19.6	17.5	0.0
Incr Delay (d2), s/veh	0.2	0.0	0.0	8.6	0.0	0.0	0.5	2.2	0.5	3.7	2.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.9	0.0	0.0	10.7	0.0	0.0	0.5	12.8	2.1	2.1	12.5	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	36.1	0.0	0.0	52.5	0.0	0.0	15.5	21.3	13.2	23.3	19.6	0.0
LnGrp LOS	D	Α		D	Α	Α	В	С	В	С	В	
Approach Vol, veh/h		79			342			1607			1586	
Approach Delay, s/veh		36.1			52.5			20.3			20.0	
Approach LOS		D			D			С			С	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	9.6	75.8		34.7	12.3	73.1		34.7				
Change Period (Y+Rc), s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Setting (Gmax), s	9.5	58.5		35.5	10.5	57.5		35.5				
Max Q Clear Time (g_c+l1), s	3.4	36.9		6.2	6.6	36.9		28.0				
Green Ext Time (p_c), s	0.0	15.6		0.4	0.1	15.6		1.2				
Intersection Summary												
HCM 6th Ctrl Delay			23.6									
HCM 6th LOS			C									

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

2.9					
FRI	FRT	WRT	WRR	SBI	SBR
					אומט
					4
-					4
					0
-					Stop
					None
					-
					<u>-</u>
					<u>-</u>
					79
		-			0
		-			5
	δO	32	23	5/	5
1ajor1	N	Major2		Minor2	
55	0	-	0	119	32
-	-	-	-	32	-
-	-	-	-	87	-
4.1	-	-	-	6.4	6.2
_	-	-	-	5.4	-
-	-	-	-	5.4	-
2.2	-	-	-	3.5	3.3
1563	-	-	-	882	1048
-	-	-	-	996	-
_	-	_	_		-
	_	_	-		
1563	-	_	_	881	1048
	_	_			-
_	_	_			_
_	_				_
_	-	_	-	J+ 1	<u>-</u>
EB		WB		SB	
0.1		0		9.3	
				Α	
	EDI	CDT	WDT	WDD	CDL1
	EBL	EBT	WBT	WBR	
	4500				XUX
	1563	-	-	-	
	0.001	-	-	-	0.069
	0.001 7.3	-	-	-	0.069 9.3
	0.001	-	-	-	0.069
	1 1 0 Free - 105 # 79 0 1 1 1563 1563 EB 0.1	EBL EBT 1 67 1 67 0 0 Free Free - None 105 - 0 79 79 0 0 1 85 Iajor1 55 0 4.1 2.2 1563 1563 1563 1563 EB 0.1	EBL EBT WBT 1 67 25 1 67 25 0 0 0 0 Free Free Free - None - 105 # - 0 0 - 0 0 79 79 79 0 0 0 1 85 32 lajor1	EBL EBT WBT WBR 1 67 25 18 1 67 25 18 0 0 0 0 Free Free Free Free - None - None 165 # - 0 0 - - 0 0 - - 0 0 - 79 79 79 0 0 0 0 1 85 32 23 Major2 - - 4.1 - - - - - - - 4.1 - - - - - - - 2.2 - - - 1563 - - - - - - - - - - - - - - -	EBL EBT WBT WBR SBL None 1 67 25 18 45 1 67 25 18 45 0 0 0 0 0 Free Free Free Free Stop None - None - 105 - 165 0 # - 0 0 - 0 - 0 0 - 0 0 79

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1>		Y	
Traffic Vol, veh/h	2	111	43	2	2	2
Future Vol, veh/h	2	111	43	2	2	2
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-	None	-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage	e.# -	0	0	_	0	_
Grade, %	-, π	0	0	<u>-</u>	0	<u>-</u>
Peak Hour Factor	92	92	92	92	92	92
	2	2	2	2	2	2
Heavy Vehicles, %	2	121	47	2	2	2
Mvmt Flow	2	121	41	2	2	2
Major/Minor	Major1	N	Major2	N	Minor2	
Conflicting Flow All	49	0	-	0	173	48
Stage 1	-	-	-	-	48	-
Stage 2	_	-	-	-	125	-
Critical Hdwy	4.12	-	-	_	6.42	6.22
Critical Hdwy Stg 1	_	_	_	_	5.42	_
Critical Hdwy Stg 2	_	_	_	_	5.42	_
Follow-up Hdwy	2.218	_	_		3.518	3 318
Pot Cap-1 Maneuver	1558	_	_	-	817	1021
Stage 1	-	_	_	<u>-</u>	974	-
Stage 2	_	_	_	_	901	_
Platoon blocked, %		_	_	<u>-</u>	501	
Mov Cap-1 Maneuver	1558	_	_	_	816	1021
Mov Cap-1 Maneuver	1000	_		_	816	1021
	_	_	_		973	
Stage 1		-				
Stage 2	-	-	-	-	901	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		9	
HCM LOS	V 11				A	
					, ,	
N.C. 1 (0.4.1.5.1		ED!		MAIDT	14/55	OD! 4
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		1558	-	-	-	907
HCM Lane V/C Ratio		0.001	-	-	-	0.005
HCM Control Delay (s))	7.3	0	-	-	9
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh)	0	-	-	-	0

	•	→	•	←	•	•	†	/	>	ţ	4	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4	ሻ	†	7	ሻ	^	7	ሻ	^	7	
Traffic Volume (vph)	98	21	61	17	54	65	1332	59	115	1507	88	
Future Volume (vph)	98	21	61	17	54	65	1332	59	115	1507	88	
Lane Group Flow (vph)	0	157	65	18	57	69	1417	63	122	1603	94	
Turn Type	Perm	NA	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases		4		8		1	6		5	2		
Permitted Phases	4		8		8	6		6	2		2	
Detector Phase	4	4	8	8	8	1	6	6	5	2	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0	5.0	15.0	15.0	5.0	15.0	15.0	
Minimum Split (s)	48.5	48.5	49.5	49.5	49.5	15.0	30.5	30.5	15.0	31.5	31.5	
Total Split (s)	50.0	50.0	50.0	50.0	50.0	15.0	55.0	55.0	15.0	55.0	55.0	
Total Split (%)	41.7%	41.7%	41.7%	41.7%	41.7%	12.5%	45.8%	45.8%	12.5%	45.8%	45.8%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	
Lead/Lag						Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Min	C-Min	None	C-Min	C-Min	
v/c Ratio		0.71	0.36	0.07	0.21	0.30	0.62	0.06	0.45	0.67	0.09	
Control Delay		61.3	50.1	41.5	7.6	8.4	8.6	1.3	9.9	15.1	3.5	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		61.3	50.1	41.5	7.6	8.4	8.6	1.3	9.9	15.1	3.5	
Queue Length 50th (ft)		109	46	12	0	1	199	1	20	370	5	
Queue Length 95th (ft)		171	85	32	25	m4	m623	m7	47	580	30	
Internal Link Dist (ft)		414		332			1348			908		
Turn Bay Length (ft)			125			1000		305	300		170	
Base Capacity (vph)		548	457	704	590	267	2282	1067	291	2395	1105	
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio		0.29	0.14	0.03	0.10	0.26	0.62	0.06	0.42	0.67	0.09	

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 71 (59%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: SR 74 (Senoia Rd) & Meadow Glen Pkwy

A&R Engineering, Inc. Synchro 11 Report 24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA Page 1

	ၨ	→	\rightarrow	•	←	•	•	†	~	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	†	7	ሻ	^	7	7	^	7
Traffic Volume (veh/h)	98	21	29	61	17	54	65	1332	59	115	1507	88
Future Volume (veh/h)	98	21	29	61	17	54	65	1332	59	115	1507	88
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1870	1900	1752	1900	1870	1900	1811	1870	1885
Adj Flow Rate, veh/h	104	22	31	65	18	0	69	1417	0	122	1603	0
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	0	0	0	2	0	10	0	2	0	6	2	1
Cap, veh/h	172	31	38	227	248		271	2455	-	309	2468	
Arrive On Green	0.13	0.13	0.13	0.13	0.13	0.00	0.04	0.69	0.00	0.04	0.69	0.00
Sat Flow, veh/h	934	234	288	1351	1900	1485	1810	3554	1610	1725	3554	1598
Grp Volume(v), veh/h	157	0	0	65	18	0	69	1417	0	122	1603	0
Grp Sat Flow(s), veh/h/ln	1456	0	0	1351	1900	1485	1810	1777	1610	1725	1777	1598
Q Serve(g_s), s	11.7	0.0	0.0	0.0	1.0	0.0	1.3	24.6	0.0	2.4	30.1	0.0
Cycle Q Clear(g_c), s	12.7	0.0	0.0	5.6	1.0	0.0	1.3	24.6	0.0	2.4	30.1	0.0
Prop In Lane	0.66	0.0	0.20	1.00	1.0	1.00	1.00	24.0	1.00	1.00	30.1	1.00
•	240	0	0.20	227	248	1.00		2455	1.00	309	2468	1.00
Lane Grp Cap(c), veh/h	0.65		0.00	0.29	0.07		271	0.58		0.39		
V/C Ratio(X)		0.00					0.26				0.65	
Avail Cap(c_a), veh/h	602	1.00	1.00	552	705	1.00	346	2455	1.00	375	2468	1.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	51.1	0.0	0.0	47.8	45.8	0.0	9.3	9.5	0.0	8.4	10.2	0.0
Incr Delay (d2), s/veh	3.0	0.0	0.0	0.7	0.1	0.0	0.5	1.0	0.0	0.8	1.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.8	0.0	0.0	1.8	0.5	0.0	0.4	7.7	0.0	0.7	9.5	0.0
Unsig. Movement Delay, s/veh					4= 0			40 =				2.0
LnGrp Delay(d),s/veh	54.1	0.0	0.0	48.5	45.9	0.0	9.8	10.5	0.0	9.2	11.5	0.0
LnGrp LOS	D	A	A	D	D		A	В		A	В	
Approach Vol, veh/h		157			83			1486			1725	
Approach Delay, s/veh		54.1			47.9			10.5			11.4	
Approach LOS		D			D			В			В	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	10.0	88.8		21.2	10.4	88.4		21.2				
Change Period (Y+Rc), s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Setting (Gmax), s	9.5	49.5		44.5	9.5	49.5		44.5				
Max Q Clear Time (g_c+l1), s	3.3	32.1		14.7	4.4	26.6		7.6				
Green Ext Time (p_c), s	0.1	14.3		1.0	0.1	16.3		0.3				
Intersection Summary												
HCM 6th Ctrl Delay			13.8									
HCM 6th LOS			15.0 B									
Notes												

Unsignalized Delay for [NBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

	•	_	~	—	•	†	<i>></i>	<u> </u>	Ţ	4	
Lana Craun	EDI	FDT	₩ WDI	WDT	NDI	NDT	NDD	CDI	CDT	CDD	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	50	4	005	- ♣	<u>ነ</u>	^	7	`	↑ ↑	7	
Traffic Volume (vph)	52	84	225	56	60	1375	123	244	1359	49	
Future Volume (vph)	52	84	225	56	60	1375	123	244	1359	49	
Lane Group Flow (vph)	0	179	0	370	65	1478	132	262	1461	53	
Turn Type	Perm	NA	Perm	NA	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases		4	_	8	1	6	_	5	2	_	
Permitted Phases	4		8		6		6	2		2	
Detector Phase	4	4	8	8	1	6	6	5	2	2	
Switch Phase											
Minimum Initial (s)	6.0	6.0	6.0	6.0	5.0	15.0	15.0	5.0	15.0	15.0	
Minimum Split (s)	31.5	31.5	30.5	30.5	15.0	28.5	28.5	15.0	28.5	28.5	
Total Split (s)	42.0	42.0	42.0	42.0	15.0	59.0	59.0	19.0	63.0	63.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	12.5%	49.2%	49.2%	15.8%	52.5%	52.5%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.5		5.5	5.5	5.5	5.5	5.5	5.5	5.5	
Lead/Lag					Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Min	C-Min	None	C-Min	C-Min	
v/c Ratio		0.39		0.98	0.38	0.95	0.17	0.98	0.80	0.06	
Control Delay		34.0		83.0	17.9	45.5	7.4	74.7	29.1	3.9	
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		34.0		83.0	17.9	45.5	7.4	74.7	29.1	3.9	
Queue Length 50th (ft)		103		278	19	565	16	147	595	7	
Queue Length 95th (ft)		170		#481	40	#730	54	#320	683	m12	
Internal Link Dist (ft)		747		818		1030			1305		
Turn Bay Length (ft)					345		230	350		200	
Base Capacity (vph)		463		377	206	1562	757	266	1826	852	
Starvation Cap Reductn		0		0	0	0	0	0	0	0	
Spillback Cap Reductn		0		0	0	0	0	0	0	0	
Storage Cap Reductn		0		0	0	0	0	0	0	0	
D 1 1 1 D 1		0.00		0.00	0.00	0.05	0.47	0.00	0.00	0.00	

Cycle Length: 120

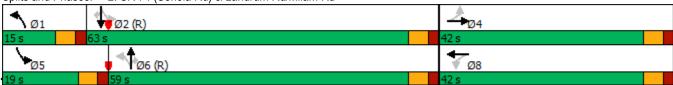
Reduced v/c Ratio

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

0.39

Natural Cycle: 90


Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: SR 74 (Senoia Rd) & Landrum Rd/Milam Rd

0.98

0.32

0.95

0.17

0.98

0.80

0.06

A&R Engineering, Inc.

Synchro 11 Report

24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA

Novement		ၨ	→	•	•	←	•	•	†	~	>	ļ	4
Traffic Yolume (yeh/h)	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (veh/h)			4			4		7	^	7	ň	^	7
Initial Q (Qb), veh			84						1375	123		1359	
Ped-Bike Adji(A, pbT)													
Parking Bus, Adj			0			0			0			0	
Work Zone On Approach													
Adj Sat Flow, veh/h/ln 1870 1885 1856 1900 1870 1900 1856 1870 1900 1870 1900 187		1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Adj Flow Rate, veh/h 56 90 0 242 60 68 65 1478 132 262 1461 0 Peak Hour Factor 0.93													
Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93				1856									1870
Percent Heavy Veh, %													
Cap, veh/h 196 299 307 64 72 209 1647 740 288 1925 Arrive On Green 0.28 0.28 0.00 0.28 0.04 0.47 0.47 0.11 0.54 0.00 Sat Flow, veh/h 545 1054 0 906 225 255 1810 3526 1585 1810 3554 1585 Gry Volume(v), veh/h 146 0 0 370 0 0 65 1478 132 262 1461 0 Gry Sat Flow(s), veh/h 146 0 0 370 0 0 65 1478 132 262 1461 0 OS eve(g_s), so 0.0 0 0 0 22 46.2 5.8 114 38.4 0.0 Oycle Q Clear(g_s), so 0.0 0.0 31.4 0 0 0.2 246.2 5.8 11.4 38.4 0.0 Oycle Q Clear(g_so), sol			0.93				0.93	0.93					0.93
Arrive On Green			-	3									2
Sat Flow, veh/h 545 1054 0 906 225 255 1810 3526 1585 1810 3554 1585 Grp Volume(v), veh/h 146 0 0 370 0 0 65 1478 132 262 1461 0 Grp Sat Flow(s), veh/h/ln 1599 0 0 1385 0 0 1810 1763 1585 1810 1777 1585 Q Serve(g_s), s 0.0 0.0 0.0 2.2 46.2 5.8 11.4 38.4 0.0 Cycle Q Clear(g_c), s 8.1 0.0 0.0 31.4 0.0 0.0 2.2 46.2 5.8 11.4 38.4 0.0 Cycle Q Clear(g_c), seh/h 486 0 443 0 0 0.0 1647 740 288 1925 V/C Ratio(X) 0.29 0.00 0.84 0.00 0.00 0.31 0.90 0.18 0.91 0.76 HCM P													
Grp Volume(v), veh/h 146 0 0 370 0 65 1478 132 262 1461 0 Grp Sat Flow(s), veh/h/ln 1599 0 0 1385 0 0 1810 1763 1585 1810 1777 1585 Q Serve(g_s), s 0.0 0.0 0.2 23 0.0 0.0 2.2 46.2 5.8 11.4 38.4 0.0 Cycle Q Clear(g_c), s 8.1 0.0 0.0 31.4 0.0 0.0 2.2 46.2 5.8 11.4 38.4 0.0 Prop In Lane 0.38 0.00 0.65 0.18 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 496 0 4472 0 0 285 1647 740 288 1925 V/C Ratio(X) 0.29 0.00 0.84 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0				0.00									
Grp Sat Flow(s), veh/h/ln 1599 0 0 1385 0 0 1810 1763 1585 1810 1777 1585 Q Serve(g_s), s 0.0 0.0 0.0 23.3 0.0 0.0 22. 46.2 5.8 11.4 38.4 0.0 Cycle Q Clear(g_c), s 8.1 0.0 0.0 31.4 0.0 0.0 22.2 46.2 5.8 11.4 38.4 0.0 Cycle Q Clear(g_c), s 8.1 0.0 0.0 31.4 0.0 0.0 2.2 46.2 5.8 11.4 38.4 0.0 Cycle Q Clear(g_c), veh/h 496 0 0.0 0.0 0.65 0.18 1.00 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 496 0 44.3 0 0 209 1647 740 288 1925 V/C Ratio(X) 0.29 0.00 0.84 0.00 0.00 0.31 0.90 0.18 0.91 0.76 Avail Cap(c_a), veh/h 528 0 472 0 0 285 1647 740 290 1925 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0		545	1054	0	906	225	255	1810	3526	1585	1810	3554	1585
Q Serve(g_s), s	Grp Volume(v), veh/h	146	0	0	370	0	0	65	1478	132	262	1461	0
Cycle Q Clear(g_c), s 8.1 0.0 0.0 31.4 0.0 0.0 2.2 46.2 5.8 11.4 38.4 0.0 Prop In Lane 0.38 0.00 0.65 0.18 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 496 0 443 0 0 209 1647 740 288 1925 V/C Ratio(X) 0.29 0.00 0.84 0.00 0.00 0.31 0.90 0.18 0.91 0.76 Avail Cap(c_a), veh/h 528 0 472 0 0 285 1647 740 290 1925 HCM Platoon Ratio 1.00	Grp Sat Flow(s),veh/h/ln	1599	0	0	1385	0	0	1810	1763	1585	1810	1777	1585
Prop In Lane	Q Serve(g_s), s	0.0	0.0	0.0	23.3	0.0	0.0	2.2	46.2	5.8	11.4	38.4	0.0
Lane Grp Cap(c), veh/h 496 0 443 0 0 0 209 1647 740 288 1925 V/C Ratio(X) 0.29 0.00 0.84 0.00 0.00 0.31 0.90 0.18 0.91 0.76 Avail Cap(c_a), veh/h 528 0 472 0 0 285 1647 740 290 1925 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0		8.1	0.0	0.0	31.4	0.0	0.0	2.2	46.2	5.8	11.4	38.4	0.0
V/C Ratio(X) 0.29 0.00 0.84 0.00 0.00 0.31 0.90 0.18 0.91 0.76 Avail Cap(c_a), veh/h 528 0 472 0 0 285 1647 740 290 1925 HCM Platoon Ratio 1.00 1.0	Prop In Lane	0.38		0.00	0.65		0.18	1.00		1.00	1.00		1.00
Avail Cap(c_a), veh/h 528 0 472 0 0 285 1647 740 290 1925 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Lane Grp Cap(c), veh/h	496	0		443	0	0	209	1647	740	288	1925	
HCM Platoon Ratio	V/C Ratio(X)	0.29	0.00		0.84	0.00	0.00	0.31	0.90	0.18	0.91	0.76	
HCM Platoon Ratio	Avail Cap(c_a), veh/h	528	0		472	0	0	285	1647	740	290	1925	
Uniform Delay (d), s/veh 33.5 0.0 0.0 42.3 0.0 0.0 19.7 29.3 18.6 34.0 21.4 0.0 lncr Delay (d2), s/veh 0.3 0.0 0.0 11.8 0.0 0.0 0.8 8.1 0.5 30.6 2.9 0.0 lnitial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incr Delay (d2), s/veh	Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00
Incr Delay (d2), s/veh	Uniform Delay (d), s/veh	33.5	0.0	0.0	42.3	0.0	0.0	19.7	29.3	18.6	34.0	21.4	0.0
Initial Q Delay(d3),s/veh		0.3	0.0	0.0	11.8	0.0	0.0	0.8	8.1	0.5	30.6	2.9	0.0
%ile BackOfQ(50%),veh/ln 3.4 0.0 0.0 12.0 0.0 0.0 19.4 2.1 9.8 14.8 0.0 Unsig. Movement Delay, s/veh 33.8 0.0 0.0 54.1 0.0 0.0 20.5 37.5 19.1 64.6 24.3 0.0 LnGrp LOS C A D A A C D B E C Approach Vol, veh/h 146 370 1675 1723 Approach Delay, s/veh 33.8 54.1 35.4 30.4 Approach LOS C D D C Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 9.9 70.5 39.6 18.9 61.6 39.6 Change Period (Y+Rc), s 5.5 5.5 5.5 5.5 5.5 Max Green Setting (Gmax), s 9.5 57.5 36.5 13.5 53.5 36.5 Max Q Clear Time (g_c+l1), s 4.2 40.4 10.1 13.4 48.2 33.4 <t< td=""><td></td><td></td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td>0.0</td><td></td><td></td></t<>			0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 33.8 0.0 0.0 54.1 0.0 0.0 20.5 37.5 19.1 64.6 24.3 0.0 LnGrp LOS C A D A C D B E C Approach Vol, veh/h 146 370 1675 1723 Approach Delay, s/veh 33.8 54.1 35.4 30.4 Approach LOS C D D C Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 9.9 70.5 39.6 Change Period (Y+Rc), s 5.5 5.5 5.5 5.5 Max Green Setting (Gmax), s 9.5 57.5 36.5 Max Q Clear Time (g_c+I1), s 4.2 40.4 10.1 13.4 48.2 33.4 Green Ext Time (p_c), s 0.0 13.9 14.9 15.1 16.6 24.3 0.0 16.7 16.7 1723 30.4 30.4 45 66 8 8 10.7 10.1 10.		3.4	0.0	0.0	12.0	0.0	0.0	0.9	19.4	2.1	9.8	14.8	0.0
LnGrp Delay(d),s/veh 33.8 0.0 0.0 54.1 0.0 0.0 20.5 37.5 19.1 64.6 24.3 0.0 LnGrp LOS C A D A A C D B E C Approach Vol, veh/h 146 370 1675 1723 </td <td></td>													
LnGrp LOS C A D A A C D B E C Approach Vol, veh/h 146 370 1675 1723 Approach Delay, s/veh 33.8 54.1 35.4 30.4 Approach LOS C D D D C Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 9.9 70.5 39.6 18.9 61.6 39.6 Change Period (Y+Rc), s 5.5 5.5 5.5 5.5 5.5 Max Green Setting (Gmax), s 9.5 57.5 36.5 13.5 53.5 36.5 Max Q Clear Time (g_c+l1), s 4.2 40.4 10.1 13.4 48.2 33.4 Green Ext Time (p_c), s 0.0 13.2 0.8 0.0 4.8 0.7 Intersection Summary HCM 6th Ctrl Delay 34.9			0.0	0.0	54.1	0.0	0.0	20.5	37.5	19.1	64.6	24.3	0.0
Approach Vol, veh/h 146 370 1675 1723 Approach Delay, s/veh 33.8 54.1 35.4 30.4 Approach LOS C D D C Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 9.9 70.5 39.6 18.9 61.6 39.6 Change Period (Y+Rc), s 5.5 5.5 5.5 5.5 5.5 Max Green Setting (Gmax), s 9.5 57.5 36.5 13.5 53.5 36.5 Max Q Clear Time (g_c+l1), s 4.2 40.4 10.1 13.4 48.2 33.4 Green Ext Time (p_c), s 0.0 13.2 0.8 0.0 4.8 0.7 Intersection Summary HCM 6th Ctrl Delay 34.9													
Approach Delay, s/veh 33.8 54.1 35.4 30.4 Approach LOS C D D C Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 9.9 70.5 39.6 18.9 61.6 39.6 Change Period (Y+Rc), s 5.5 5.5 5.5 5.5 5.5 Max Green Setting (Gmax), s 9.5 57.5 36.5 13.5 53.5 36.5 Max Q Clear Time (g_c+l1), s 4.2 40.4 10.1 13.4 48.2 33.4 Green Ext Time (p_c), s 0.0 13.2 0.8 0.0 4.8 0.7 Intersection Summary HCM 6th Ctrl Delay 34.9			146			370			1675			1723	
Approach LOS C D D C Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 9.9 70.5 39.6 18.9 61.6 39.6 Change Period (Y+Rc), s 5.5 5.5 5.5 5.5 5.5 Max Green Setting (Gmax), s 9.5 57.5 36.5 13.5 53.5 36.5 Max Q Clear Time (g_c+I1), s 4.2 40.4 10.1 13.4 48.2 33.4 Green Ext Time (p_c), s 0.0 13.2 0.8 0.0 4.8 0.7 Intersection Summary HCM 6th Ctrl Delay 34.9													
Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 9.9 70.5 39.6 18.9 61.6 39.6 Change Period (Y+Rc), s 5.5 5.5 5.5 5.5 5.5 Max Green Setting (Gmax), s 9.5 57.5 36.5 13.5 53.5 36.5 Max Q Clear Time (g_c+l1), s 4.2 40.4 10.1 13.4 48.2 33.4 Green Ext Time (p_c), s 0.0 13.2 0.8 0.0 4.8 0.7 Intersection Summary HCM 6th Ctrl Delay 34.9													
Phs Duration (G+Y+Rc), s 9.9 70.5 39.6 18.9 61.6 39.6 Change Period (Y+Rc), s 5.5 5.5 5.5 5.5 5.5 Max Green Setting (Gmax), s 9.5 57.5 36.5 13.5 53.5 36.5 Max Q Clear Time (g_c+I1), s 4.2 40.4 10.1 13.4 48.2 33.4 Green Ext Time (p_c), s 0.0 13.2 0.8 0.0 4.8 0.7 Intersection Summary HCM 6th Ctrl Delay 34.9		1			1		6						
Change Period (Y+Rc), s 5.5 5.5 5.5 5.5 5.5 5.5 5.5 Max Green Setting (Gmax), s 9.5 57.5 36.5 13.5 53.5 36.5 Max Q Clear Time (g_c+l1), s 4.2 40.4 10.1 13.4 48.2 33.4 Green Ext Time (p_c), s 0.0 13.2 0.8 0.0 4.8 0.7 Intersection Summary HCM 6th Ctrl Delay 34.9													
Max Green Setting (Gmax), s 9.5 57.5 36.5 13.5 53.5 36.5 Max Q Clear Time (g_c+l1), s 4.2 40.4 10.1 13.4 48.2 33.4 Green Ext Time (p_c), s 0.0 13.2 0.8 0.0 4.8 0.7 Intersection Summary HCM 6th Ctrl Delay 34.9													
Max Q Clear Time (g_c+I1), s 4.2 40.4 10.1 13.4 48.2 33.4 Green Ext Time (p_c), s 0.0 13.2 0.8 0.0 4.8 0.7 Intersection Summary HCM 6th Ctrl Delay 34.9	. ,												
Green Ext Time (p_c), s 0.0 13.2 0.8 0.0 4.8 0.7 Intersection Summary HCM 6th Ctrl Delay 34.9													
Intersection Summary HCM 6th Ctrl Delay 34.9	νο— ,,												
HCM 6th Ctrl Delay 34.9	$u = \gamma$	0.0	13.2		0.6	0.0	4.0		0.7				
HCM 6th LOS C													
	HCM 6th LOS			С									

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection						
Int Delay, s/veh	1.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	T T	<u></u>	<u>₩</u>	VVDIX	Ŋ.	אומט
Traffic Vol, veh/h	5	T 55	68	43	22	3
Future Vol, veh/h	5	55	68	43	22	3
Conflicting Peds, #/hr	0	0	00	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	Stop -	None
Storage Length	105	-	_	165	0	NOHE -
Veh in Median Storage,		0	0	-	0	_
Grade, %	# - -	0	0	_	0	_
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	0	0	0	0	0	0
	5		75	47	24	
Mvmt Flow	5	60	75	47	24	3
Major/Minor Ma	ajor1	N	Major2	N	Minor2	
Conflicting Flow All	122	0		0	145	75
Stage 1	-	-	_	-	75	-
Stage 2	-	_	_	-	70	_
Critical Hdwy	4.1	_	_	_	6.4	6.2
Critical Hdwy Stg 1		_	_	_	5.4	-
Critical Hdwy Stg 2	_	_	_	_	5.4	_
Follow-up Hdwy	2.2	_	_	_	3.5	3.3
	1478	_	_	_	852	992
Stage 1		_	_	_	953	-
Stage 2	_	_	_	_	958	_
Platoon blocked, %		_	_	_	000	
	1478		_	_	849	992
Mov Cap-2 Maneuver	-	_		_	849	33Z -
Stage 1	-	-	-		950	_
•	-	-	-	-	950	-
Stage 2	-	-	-	-	300	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.6		0		9.3	
HCM LOS					Α	
Minor Long/Major Mares		EDI	EDT	WDT	WDD	CDI 51
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR	
Capacity (veh/h)		1478	-	-	-	864
HCM Lane V/C Ratio		0.004	-	-		0.032
LICM Control Dala ()		7.4	-	-	-	9.3
HCM Control Delay (s)						
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)		A 0	-	-	-	A 0.1

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
	LDL			אטוע		אמט
Lane Configurations	2	€	}	2	Y	2
Traffic Vol, veh/h	3	77 77	111	3	3	3
Future Vol, veh/h	3	77	111	3	3	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	3	84	121	3	3	3
Major/Minor	Major1		Major2	,	Minor2	
	Major1					400
Conflicting Flow All	124	0	-	0	213	123
Stage 1	-	-	-	-	123	-
Stage 2	-	-	-	-	90	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1463	-	-	-	775	928
Stage 1	-	-	-	-	902	-
Stage 2	-	-	-	-	934	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1463	-	-	-	773	928
Mov Cap-2 Maneuver	-	-	-	-	773	-
Stage 1	-	-	-	-	900	-
Stage 2	_	_	_	_	934	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.3		0		9.3	
HCM LOS					Α	
TIOW LOO						
TIOW LOO						
	+	EDI	EDT	WDT	WPD (2DI 51
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR	
Minor Lane/Major Mvm Capacity (veh/h)	t	1463	-	-	-	843
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio		1463 0.002	-	- -	-	843 0.008
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		1463 0.002 7.5	- - 0	- - -	- - -	843 0.008 9.3
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio		1463 0.002	-	- -	-	843 0.008

FUTURE	"BUILD"	INTERSECTION	ANALYSIS

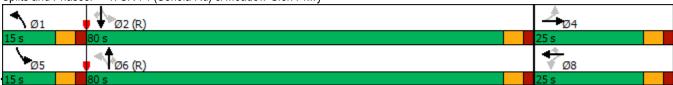
	۶	→	•	←	•	4	†	<i>></i>	/	ţ	4	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4	ሻ	†	7	ሻ	^	7	ሻ	^	7	
Traffic Volume (vph)	115	16	52	8	14	42	1265	67	67	1355	59	
Future Volume (vph)	115	16	52	8	14	42	1265	67	67	1355	59	
Lane Group Flow (vph)	0	161	53	8	14	43	1291	68	68	1383	60	
Turn Type	Perm	NA	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases		4		8		1	6		5	2		
Permitted Phases	4		8		8	6		6	2		2	
Detector Phase	4	4	8	8	8	1	6	6	5	2	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0	5.0	15.0	15.0	5.0	15.0	15.0	
Minimum Split (s)	48.5	48.5	49.5	49.5	49.5	15.0	30.5	30.5	15.0	31.5	31.5	
Total Split (s)	25.0	25.0	25.0	25.0	25.0	15.0	80.0	80.0	15.0	80.0	80.0	
Total Split (%)	20.8%	20.8%	20.8%	20.8%	20.8%	12.5%	66.7%	66.7%	12.5%	66.7%	66.7%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	
Lead/Lag						Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Min	C-Min	None	C-Min	C-Min	
v/c Ratio		0.78	0.29	0.03	0.05	0.15	0.54	0.06	0.22	0.59	0.05	
Control Delay		71.5	49.3	43.0	0.4	6.4	26.6	7.3	5.7	12.2	1.4	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		71.5	49.3	43.0	0.4	6.4	26.6	7.3	5.7	12.2	1.4	
Queue Length 50th (ft)		114	37	5	0	12	539	17	11	301	0	
Queue Length 95th (ft)		#199	76	20	0	m14	616	m20	24	383	12	
Internal Link Dist (ft)		414		332			824			908		
Turn Bay Length (ft)			125			1000		305	300		170	
Base Capacity (vph)		242	215	308	320	328	2385	1079	345	2345	1091	
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio		0.67	0.25	0.03	0.04	0.13	0.54	0.06	0.20	0.59	0.05	

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 74 (62%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 110


Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: SR 74 (Senoia Rd) & Meadow Glen Pkwy

A&R Engineering, Inc.

Synchro 11 Report

24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA

	۶	→	*	•	←	4	1	†	~	/	†	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			•	7	ሻ	^	7	*	^	7
Traffic Volume (veh/h)	115	16	27	52	8	14	42	1265	67	67	1355	59
Future Volume (veh/h)	115	16	27	52	8	14	42	1265	67	67	1355	59
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1900	1885	1900	1841	1826	1856	1811	1841
Adj Flow Rate, veh/h	117	16	28	53	8	0	43	1291	0	68	1383	0
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Percent Heavy Veh, %	0	0	0	0	0	1	0	4	5	3	6	4
Cap, veh/h	187	19	32	238	243		317	2438		346	2418	
Arrive On Green	0.13	0.13	0.13	0.13	0.13	0.00	0.03	0.70	0.00	0.04	0.70	0.00
Sat Flow, veh/h	1056	147	253	1384	1900	1598	1810	3497	1547	1767	3441	1560
Grp Volume(v), veh/h	161	0	0	53	8	0	43	1291	0	68	1383	0
Grp Sat Flow(s),veh/h/ln	1456	0	0	1384	1900	1598	1810	1749	1547	1767	1721	1560
Q Serve(g_s), s	12.6	0.0	0.0	0.0	0.4	0.0	0.8	21.3	0.0	1.3	24.0	0.0
Cycle Q Clear(g_c), s	13.1	0.0	0.0	4.1	0.4	0.0	0.8	21.3	0.0	1.3	24.0	0.0
Prop In Lane	0.73	_	0.17	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	238	0	0	238	243		317	2438		346	2418	
V/C Ratio(X)	0.68	0.00	0.00	0.22	0.03		0.14	0.53		0.20	0.57	
Avail Cap(c_a), veh/h	290	0	0	286	309	4.00	403	2438	4.00	420	2418	4.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	51.5	0.0	0.0	47.4	45.8	0.0	7.1	8.7	0.0	6.6	8.9	0.0
Incr Delay (d2), s/veh	4.6	0.0	0.0	0.5	0.1	0.0	0.2	0.8	0.0	0.3	1.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.1	0.0	0.0	1.5	0.2	0.0	0.2	6.5	0.0	0.4	7.2	0.0
Unsig. Movement Delay, s/veh		0.0	0.0	47.0	45.0	0.0	7.0	0.6	0.0	6.0	0.0	0.0
LnGrp Delay(d),s/veh	56.1 E	0.0	0.0 A	47.9 D	45.9 D	0.0	7.2	9.6	0.0	6.9	9.9	0.0
LnGrp LOS		A 404	A	U			A	A 224		A	A 454	
Approach Vol, veh/h		161			61			1334			1451	
Approach Delay, s/veh		56.1			47.6			9.5			9.7	
Approach LOS		Е			D			Α			А	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	9.3	89.8		20.9	10.0	89.1		20.9				
Change Period (Y+Rc), s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Setting (Gmax), s	9.5	74.5		19.5	9.5	74.5		19.5				
Max Q Clear Time (g_c+l1), s	2.8	26.0		15.1	3.3	23.3		6.1				
Green Ext Time (p_c), s	0.0	25.9		0.3	0.1	24.0		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			12.9									
HCM 6th LOS			В									

User approved pedestrian interval to be less than phase max green.

Unsignalized Delay for [NBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Synchro 11 Report A&R Engineering, Inc. 24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA Page 2

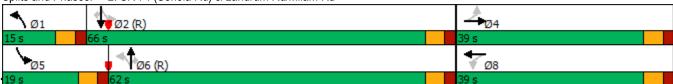
	•	→	•	+	4	†	/	/	Ţ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		4	7	44	7	7	^	7	
Traffic Volume (vph)	33	42	182	41	46	1261	152	208	1299	25	
Future Volume (vph)	33	42	182	41	46	1261	152	208	1299	25	
Lane Group Flow (vph)	0	111	0	347	51	1401	169	231	1443	28	
Turn Type	Perm	NA	Perm	NA	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases		4		8	1	6		5	2		
Permitted Phases	4		8		6		6	2		2	
Detector Phase	4	4	8	8	1	6	6	5	2	2	
Switch Phase											
Minimum Initial (s)	6.0	6.0	6.0	6.0	5.0	15.0	15.0	5.0	15.0	15.0	
Minimum Split (s)	31.5	31.5	30.5	30.5	15.0	28.5	28.5	15.0	28.5	28.5	
Total Split (s)	39.0	39.0	39.0	39.0	15.0	62.0	62.0	19.0	66.0	66.0	
Total Split (%)	32.5%	32.5%	32.5%	32.5%	12.5%	51.7%	51.7%	15.8%	55.0%	55.0%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.5		5.5	5.5	5.5	5.5	5.5	5.5	5.5	
Lead/Lag					Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Min	C-Min	None	C-Min	C-Min	
v/c Ratio		0.28		0.94	0.27	0.83	0.20	0.88	0.76	0.03	
Control Delay		32.2		74.2	12.9	32.6	5.5	68.2	17.9	0.2	
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		32.2		74.2	12.9	32.6	5.5	68.2	17.9	0.2	
Queue Length 50th (ft)		59		247	14	496	15	106	477	0	
Queue Length 95th (ft)		109		#424	29	603	54	#259	590	m0	
Internal Link Dist (ft)		747		818		1030			1305		
Turn Bay Length (ft)					345		230	350		200	
Base Capacity (vph)		422		391	232	1682	858	272	1907	840	
Starvation Cap Reductn		0		0	0	0	0	0	0	0	
Spillback Cap Reductn		0		0	0	0	0	0	0	0	
Storage Cap Reductn		0		0	0	0	0	0	0	0	
Reduced v/c Ratio		0.26		0.89	0.22	0.83	0.20	0.85	0.76	0.03	

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 90


Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: SR 74 (Senoia Rd) & Landrum Rd/Milam Rd

A&R Engineering, Inc.

Synchro 11 Report

24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA

	ၨ	→	•	•	←	•	4	†	~	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		Ţ	^	7	7	^	7
Traffic Volume (veh/h)	33	42	24	182	41	89	46	1261	152	208	1299	25
Future Volume (veh/h)	33	42	24	182	41	89	46	1261	152	208	1299	25
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1841	1900	1841	1885	1900	1885	1870	1826	1900	1900	1811	1722
Adj Flow Rate, veh/h	37	47	0	202	46	99	51	1401	169	231	1443	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	4	0	4	1	0	1	2	5	0	0	6	12
Cap, veh/h	187	223		266	50	107	225	1886	876	271	2006	
Arrive On Green	0.25	0.25	0.00	0.25	0.25	0.25	0.03	0.54	0.54	0.07	0.58	0.00
Sat Flow, veh/h	587	909	0	889	202	436	1781	3469	1610	1810	3441	1459
Grp Volume(v), veh/h	84	0	0	347	0	0	51	1401	169	231	1443	0
Grp Sat Flow(s), veh/h/ln	1496	0	0	1527	0	0	1781	1735	1610	1810	1721	1459
Q Serve(g_s), s	0.0	0.0	0.0	21.8	0.0	0.0	1.5	37.1	6.4	6.5	36.1	0.0
Cycle Q Clear(g_c), s	4.7	0.0	0.0	26.6	0.0	0.0	1.5	37.1	6.4	6.5	36.1	0.0
Prop In Lane	0.44	0.0	0.00	0.58	0.0	0.29	1.00	07.1	1.00	1.00	50.1	1.00
Lane Grp Cap(c), veh/h	410	0	0.00	422	0	0.23	225	1886	876	271	2006	1.00
V/C Ratio(X)	0.20	0.00		0.82	0.00	0.00	0.23	0.74	0.19	0.85	0.72	
Avail Cap(c_a), veh/h	463	0.00		473	0.00	0.00	305	1886	876	342	2006	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	35.8	0.00	0.00	43.9	0.00	0.00	15.8	21.0	14.0	23.2	18.0	0.00
Incr Delay (d2), s/veh	0.2	0.0	0.0	10.2	0.0	0.0	0.5	2.7	0.5	15.4	2.3	0.0
	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	2.0	0.0	0.0	11.1	0.0	0.0	0.6	13.9	2.2	4.5	12.9	0.0
%ile BackOfQ(50%),veh/ln		0.0	0.0	11.1	0.0	0.0	0.0	13.9	2.2	4.5	12.9	0.0
Unsig. Movement Delay, s/veh		0.0	0.0	544	0.0	0.0	40.0	00.0	444	20.0	00.0	0.0
LnGrp Delay(d),s/veh	36.1	0.0	0.0	54.1	0.0	0.0	16.3	23.6	14.4	38.6	20.2	0.0
LnGrp LOS	D	A		D	Α	A	В	C	В	D	C	
Approach Vol, veh/h		84			347			1621			1674	
Approach Delay, s/veh		36.1			54.1			22.5			22.8	
Approach LOS		D			D			С			С	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	9.6	75.5		34.9	14.3	70.7		34.9				
Change Period (Y+Rc), s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Setting (Gmax), s	9.5	60.5		33.5	13.5	56.5		33.5				
Max Q Clear Time (g c+l1), s	3.5	38.1		6.7	8.5	39.1		28.6				
Green Ext Time (p_c), s	0.0	16.3		0.4	0.3	13.7		0.9				
Intersection Summary												
HCM 6th Ctrl Delay			25.9									
HCM 6th LOS			23.3 C									
Notes												

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection												
Int Delay, s/veh	5.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	<u></u>	7	ሻ	<u></u>	7		4			4	
Traffic Vol, veh/h	1	67	0	43	25	18	0	0	62	45	0	4
Future Vol, veh/h	1	67	0	43	25	18	0	0	62	45	0	4
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	<u>-</u>	None	-	-	None
Storage Length	105	-	100	85	-	165	-	-	-	-	-	-
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	_
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	1	85	0	54	32	23	0	0	78	57	0	5
Major/Minor N	/lajor1		ľ	Major2		ı	Minor1		N	/linor2		
Conflicting Flow All	55	0	0	85	0	0	241	250	85	266	227	32
Stage 1	-	-	-	-	-	-	87	87	-	140	140	-
Stage 2	-	-	-	-	-	-	154	163	-	126	87	-
Critical Hdwy	4.1	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1563	-	-	1524	-	-	717	656	980	691	676	1048
Stage 1	-	-	-	-	-	-	926	827	-	868	785	-
Stage 2	-	-	-	-	-	-	853	767	-	883	827	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1563	-	-	1524	-	-	694	632	980	618	652	1048
Mov Cap-2 Maneuver	-	-	-	-	-	-	694	632	-	618	652	-
Stage 1	-	-	-	-	-	-	925	826	-	867	758	-
Stage 2	-	-	-	-	-	-	819	740	-	812	826	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			3.7			9			11.2		
HCM LOS							Α			В		
Minor Lane/Major Mvm	tN	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBL _{n1}			
Capacity (veh/h)		980	1563	-	-	1524	-	-	639			
HCM Lane V/C Ratio		0.08	0.001	-	-	0.036	-	-	0.097			
HCM Control Delay (s)		9	7.3	-	-	7.5	-	-	11.2			
HCM Lane LOS		Α	Α	-	-	Α	-	-	В			
HCM 95th %tile Q(veh)		0.3	0	-	-	0.1	-	-	0.3			

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	VVDIX	₩.	אופט
Traffic Vol, veh/h	2	173	T 86	- r 4	10	0
Future Vol, veh/h	2	173	86	4	10	0
Conflicting Peds, #/hr	0	0	00	0	0	0
	Free	Free	Free		Stop	
Sign Control	Free -	None		Free		Stop
RT Channelized			-	None	-	
Storage Length	-	-	-	100	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	2	188	93	4	11	0
Major/Minor	Major1	N	Major2		Minor2	
Conflicting Flow All	97	0	-	0	285	93
Stage 1	-	J	_	-	93	-
Stage 2	_	_	-	_	192	_
	4.1	-	-		6.4	6.2
Critical Hdwy		-		-		
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1509	-	-	-	710	970
Stage 1	-	-	-	-	936	-
Stage 2	-	-	-	-	845	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1509	-	-	-	709	970
Mov Cap-2 Maneuver	-	-	-	-	709	-
Stage 1	-	-	-	_	935	-
Stage 2	_	_	_	_	845	_
					0.0	
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		10.2	
HCM LOS					В	
Minor Long/Major M.	. +	EDI	CDT	WDT	WDD	CDL4
Minor Lane/Major Mvn	π	EBL	EBT	WBT	WBR :	
Capacity (veh/h)		1509	-	-		709
HCM Lane V/C Ratio		0.001	-	-		0.015
HCM Control Delay (s)		7.4	0	-	-	10.2
HCM Lane LOS		Α	Α	-	-	В
HCM 95th %tile Q(veh)	0	-	-	-	0

Intersection						
Int Delay, s/veh	0.9					
		EDD.	NDI	NDT	ODT	ODD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		^	^	7
Traffic Vol, veh/h	0	122	0	1374	1354	91
Future Vol, veh/h	0	122	0	1374	1354	91
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	None	-	Free
Storage Length	-	0	-	-	-	250
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	5	6	2
Mvmt Flow	0	133	0	1493	1472	99
	•					
	/linor2		/lajor1		Major2	
Conflicting Flow All	-	736	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	_	-
Critical Hdwy Stg 2	_	-	_	_	_	-
Follow-up Hdwy	_	3.32	-	_	_	_
Pot Cap-1 Maneuver	0	361	0	_	_	0
Stage 1	0	-	0	_	_	0
Stage 2	0	_	0	_	_	0
Platoon blocked, %	U	_	U	_	_	U
		261				
Mov Cap-1 Maneuver	-	361	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	20.6		0		0	
HCM LOS	20.0 C		U		U	
HOIVI LOS	U					
Minor Lane/Major Mvm	t	NBT E	EBLn1	SBT		
Capacity (veh/h)		-	361	-		
HCM Lane V/C Ratio		_	0.367	_		
			20.6			
HCM Control Delay (s)		<u>-</u> -	20.6	-		
		- -	20.6 C 1.6	- -		

	•	→	•	←	•	4	†	<i>></i>	>	ţ	4	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4	ሻ	↑	7	ሻ	^	7	ሻ	^	7	
Traffic Volume (vph)	146	24	65	21	54	111	1376	62	115	1569	156	
Future Volume (vph)	146	24	65	21	54	111	1376	62	115	1569	156	
Lane Group Flow (vph)	0	225	69	22	57	118	1464	66	122	1669	166	
Turn Type	Perm	NA	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases		4		8		1	6		5	2		
Permitted Phases	4		8		8	6		6	2		2	
Detector Phase	4	4	8	8	8	1	6	6	5	2	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0	5.0	15.0	15.0	5.0	15.0	15.0	
Minimum Split (s)	48.5	48.5	49.5	49.5	49.5	15.0	30.5	30.5	15.0	31.5	31.5	
Total Split (s)	49.5	49.5	49.5	49.5	49.5	15.0	55.5	55.5	15.0	55.5	55.5	
Total Split (%)	41.3%	41.3%	41.3%	41.3%	41.3%	12.5%	46.3%	46.3%	12.5%	46.3%	46.3%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	
Lead/Lag						Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Min	C-Min	None	C-Min	C-Min	
v/c Ratio		0.77	0.29	0.06	0.16	0.57	0.70	0.07	0.51	0.80	0.17	
Control Delay		59.7	42.0	36.0	6.0	40.8	9.5	1.2	17.5	24.9	8.2	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		59.7	42.0	36.0	6.0	40.8	9.5	1.2	17.5	24.9	8.2	
Queue Length 50th (ft)		158	46	14	0	50	32	0	26	495	28	
Queue Length 95th (ft)		227	82	34	23	m40	m615	m7	76	#839	80	
Internal Link Dist (ft)		414		332			824			908		
Turn Bay Length (ft)			125			1000		305	300		170	
Base Capacity (vph)		537	448	696	584	227	2085	981	256	2083	972	
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio		0.42	0.15	0.03	0.10	0.52	0.70	0.07	0.48	0.80	0.17	

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 61 (51%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 130

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: SR 74 (Senoia Rd) & Meadow Glen Pkwy

A&R Engineering, Inc.

Synchro 11 Report

24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA

	۶	→	•	•	←	•	4	†	/	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	↑	7	7	^	7	ሻ	^	7
Traffic Volume (veh/h)	146	24	41	65	21	54	111	1376	62	115	1569	156
Future Volume (veh/h)	146	24	41	65	21	54	111	1376	62	115	1569	156
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1870	1900	1752	1900	1870	1900	1811	1870	1885
Adj Flow Rate, veh/h	155	26	44	69	22	0	118	1464	0	122	1669	0
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	0	0	0	2	0	10	0	2	0	6	2	1
Cap, veh/h	230	30	51	299	350		229	2264		265	2265	
Arrive On Green	0.18	0.18	0.18	0.18	0.18	0.00	0.04	0.64	0.00	0.04	0.64	0.00
Sat Flow, veh/h	974	163	277	1331	1900	1485	1810	3554	1610	1725	3554	1598
Grp Volume(v), veh/h	225	0	0	69	22	0	118	1464	0	122	1669	0
Grp Sat Flow(s),veh/h/ln	1415	0	0	1331	1900	1485	1810	1777	1610	1725	1777	1598
Q Serve(g_s), s	17.6	0.0	0.0	0.0	1.1	0.0	2.7	30.5	0.0	2.9	38.5	0.0
Cycle Q Clear(g_c), s	18.7	0.0	0.0	5.5	1.1	0.0	2.7	30.5	0.0	2.9	38.5	0.0
Prop In Lane	0.69		0.20	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	311	0	0	299	350		229	2264		265	2265	
V/C Ratio(X)	0.72	0.00	0.00	0.23	0.06		0.51	0.65		0.46	0.74	
Avail Cap(c_a), veh/h	583	0	0	542	697		299	2264		331	2265	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	48.1	0.0	0.0	42.2	40.4	0.0	16.8	13.4	0.0	12.6	14.9	0.0
Incr Delay (d2), s/veh	3.2	0.0	0.0	0.4	0.1	0.0	1.8	1.4	0.0	1.2	2.2	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	6.9	0.0	0.0	1.8	0.6	0.0	1.4	10.5	0.0	1.0	13.4	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	51.3	0.0	0.0	42.6	40.5	0.0	18.6	14.9	0.0	13.9	17.1	0.0
LnGrp LOS	D	Α	Α	D	D		В	В		В	В	
Approach Vol, veh/h		225			91			1582			1791	
Approach Delay, s/veh		51.3			42.1			15.2			16.8	
Approach LOS		D			D			В			В	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	10.4	82.0		27.6	10.4	81.9		27.6				
Change Period (Y+Rc), s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Setting (Gmax), s	9.5	50.0		44.0	9.5	50.0		44.0				
Max Q Clear Time (g_c+l1), s	4.7	40.5		20.7	4.9	32.5		7.5				
Green Ext Time (p_c), s	0.1	8.4		1.4	0.1	13.5		0.3				
Intersection Summary												
HCM 6th Ctrl Delay			18.8									
HCM 6th LOS			В									

Unsignalized Delay for [NBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

	ၨ	→	•	←	•	†	/	>	ļ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		4	ሻ	^	7	ሻ		7	
Traffic Volume (vph)	61	84	225	56	60	1403	123	298	1379	55	
Future Volume (vph)	61	84	225	56	60	1403	123	298	1379	55	
Lane Group Flow (vph)	0	189	0	379	65	1509	132	320	1483	59	
Turn Type	Perm	NA	Perm	NA	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases		4		8	1	6		5	2		
Permitted Phases	4		8		6		6	2		2	
Detector Phase	4	4	8	8	1	6	6	5	2	2	
Switch Phase											
Minimum Initial (s)	6.0	6.0	6.0	6.0	5.0	15.0	15.0	5.0	15.0	15.0	
Minimum Split (s)	31.5	31.5	30.5	30.5	15.0	28.5	28.5	15.0	28.5	28.5	
Total Split (s)	42.0	42.0	42.0	42.0	15.0	57.0	57.0	21.0	63.0	63.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	12.5%	47.5%	47.5%	17.5%	52.5%	52.5%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.5		5.5	5.5	5.5	5.5	5.5	5.5	5.5	
Lead/Lag					Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Min	C-Min	None	C-Min	C-Min	
v/c Ratio		0.42		1.00	0.38	1.00	0.18	1.08	0.81	0.07	
Control Delay		35.2		88.1	18.4	58.5	4.9	98.0	29.4	3.2	
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		35.2		88.1	18.4	58.5	4.9	98.0	29.4	3.2	
Queue Length 50th (ft)		111		~288	19	~608	4	~218	609	8	
Queue Length 95th (ft)		182		#496	40	#781	41	m#356	709	m10	
Internal Link Dist (ft)		747		818		1030			1305		
Turn Bay Length (ft)					345		230	350		200	
Base Capacity (vph)		448		378	206	1504	749	296	1826	852	
Starvation Cap Reductn		0		0	0	0	0	0	0	0	
Spillback Cap Reductn		0		0	0	0	0	0	0	0	
Storage Cap Reductn		0		0	0	0	0	0	0	0	
Reduced v/c Ratio		0.42		1.00	0.32	1.00	0.18	1.08	0.81	0.07	

Intersection Summary

Cycle Length: 120

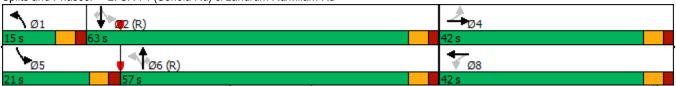
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.


Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: SR 74 (Senoia Rd) & Landrum Rd/Milam Rd

	ၨ	→	•	•	←	•	4	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		Ţ	^	7	ħ	^	7
Traffic Volume (veh/h)	61	84	31	225	56	72	60	1403	123	298	1379	55
Future Volume (veh/h)	61	84	31	225	56	72	60	1403	123	298	1379	55
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1885	1856	1900	1870	1900	1900	1856	1870	1900	1870	1870
Adj Flow Rate, veh/h	66	90	0	242	60	77	65	1509	132	320	1483	0
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	2	1	3	0	2	0	0	3	2	0	2	2
Cap, veh/h	215	278		305	63	81	200	1563	703	302	1903	
Arrive On Green	0.29	0.29	0.00	0.29	0.29	0.29	0.04	0.44	0.44	0.13	0.54	0.00
Sat Flow, veh/h	594	958	0	882	219	281	1810	3526	1585	1810	3554	1585
Grp Volume(v), veh/h	156	0	0	379	0	0	65	1509	132	320	1483	0
Grp Sat Flow(s), veh/h/ln	1552	0	0	1382	0	0	1810	1763	1585	1810	1777	1585
Q Serve(g_s), s	0.0	0.0	0.0	23.3	0.0	0.0	2.3	50.0	6.1	15.5	39.9	0.0
Cycle Q Clear(g_c), s	9.0	0.0	0.0	32.3	0.0	0.0	2.3	50.0	6.1	15.5	39.9	0.0
Prop In Lane	0.42	0.0	0.00	0.64	0.0	0.20	1.00	50.0	1.00	1.00	00.0	1.00
Lane Grp Cap(c), veh/h	493	0	0.00	450	0	0.20	200	1563	703	302	1903	1.00
V/C Ratio(X)	0.32	0.00		0.84	0.00	0.00	0.32	0.97	0.19	1.06	0.78	
Avail Cap(c_a), veh/h	515	0.00		470	0.00	0.00	277	1563	703	302	1903	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	33.3	0.00	0.00	42.1	0.00	0.00	21.1	32.5	20.3	39.3	22.2	0.00
Incr Delay (d2), s/veh	0.4	0.0	0.0	12.6	0.0	0.0	0.9	16.0	0.6	68.4	3.2	0.0
	0.4	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	3.6	0.0	0.0	12.3	0.0	0.0	0.0	22.7	2.2	14.3	15.5	0.0
%ile BackOfQ(50%),veh/ln		0.0	0.0	12.3	0.0	0.0	0.9	22.1	2.2	14.3	15.5	0.0
Unsig. Movement Delay, s/veh		0.0	0.0	E 1 7	0.0	0.0	22.0	10 E	20.0	107.7	0E E	0.0
LnGrp Delay(d),s/veh	33.6	0.0	0.0	54.7	0.0	0.0	22.0	48.5	20.9	107.7	25.5	0.0
LnGrp LOS	С	A		D	A	A	С	D	С	F	C	
Approach Vol, veh/h		156			379			1706			1803	
Approach Delay, s/veh		33.6			54.7			45.3			40.1	
Approach LOS		С			D			D			D	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	9.9	69.8		40.3	21.0	58.7		40.3				
Change Period (Y+Rc), s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Setting (Gmax), s	9.5	57.5		36.5	15.5	51.5		36.5				
Max Q Clear Time (g c+l1), s	4.3	41.9		11.0	17.5	52.0		34.3				
Green Ext Time (p_c), s	0.0	12.4		0.8	0.0	0.0		0.5				
Intersection Summary												
HCM 6th Ctrl Delay			43.4									
HCM 6th LOS			D									
Notes												

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

A&R Engineering, Inc. Synchro 11 Report 24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA Page 4

Intersection												
Int Delay, s/veh	4.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	•	7	7		7		4			4	
Traffic Vol, veh/h	5	55	0	89	68	43	0	0	57	22	0	3
Future Vol, veh/h	5	55	0	89	68	43	0	0	57	22	0	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	105	-	100	85	-	165	-	-	-	-	-	-
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	5	60	0	98	75	47	0	0	63	24	0	3
Major/Minor N	/lajor1		ľ	Major2		ı	Minor1		N	/linor2		
Conflicting Flow All	122	0	0	60	0	0	366	388	60	373	341	75
Stage 1		_	_	-	_	-	70	70	-	271	271	-
Stage 2	_	_	_	_	_	_	296	318	_	102	70	-
Critical Hdwy	4.1	_	_	4.1	_	_	7.1	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	-	_	_	-	_	_	6.1	5.5	-	6.1	5.5	-
Critical Hdwy Stg 2	_	_	_	_	_	_	6.1	5.5	_	6.1	5.5	_
Follow-up Hdwy	2.2	_	_	2.2	_	_	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1478	_	_	1556	_	_	594	550	1011	588	584	992
Stage 1	-	_	_	-	-	_	945	841	-	739	689	-
Stage 2	-	-	-	-	-	-	717	657	_	909	841	_
Platoon blocked, %		_	_		-	_						
Mov Cap-1 Maneuver	1478	_	-	1556	_	-	562	514	1011	524	545	992
Mov Cap-2 Maneuver	_	_	_	-	_	_	562	514	-	524	545	-
Stage 1	-	-	-	-	-	_	942	838	-	737	646	-
Stage 2	_	_	_	_	_	_	670	616	_	850	838	_
3 2							-					
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.6			3.3			8.8			11.8		
HCM LOS							A			В		
Minor Lane/Major Mvm	t N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		1011	1478	-		1556	-	_	555			
HCM Lane V/C Ratio			0.004	_		0.063	_	_				
HCM Control Delay (s)		8.8	7.4	_	_	7.5	-	_				
HCM Lane LOS		A	Α	-	-	A	-	-	В			
HCM 95th %tile Q(veh)		0.2	0	_	_	0.2	-	_	0.2			

A&R Engineering, Inc. 24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA Synchro 11 Report Page 5

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	<u>₩</u>	7	¥	USIN
Traffic Vol, veh/h	3	134	200	11	9	3
Future Vol, veh/h	3	134	200	11	9	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	- Olop	None
Storage Length	_	-	_	100	0	-
Veh in Median Storage,		0	0	-	0	_
Grade, %	, rr =	0	0	-	0	<u>-</u>
Peak Hour Factor	92	92	92	92	92	92
	92	92	92	92	92	92
Heavy Vehicles, %	3	146		12		
Mvmt Flow	3	146	217	12	10	3
Major/Minor N	/lajor1	N	Major2	1	Minor2	
Conflicting Flow All	229	0	-	0	369	217
Stage 1	-	-	_	-	217	-
Stage 2	_	_	_	_	152	_
Critical Hdwy	4.1	_	_	_	6.4	6.2
Critical Hdwy Stg 1		<u>-</u>	_	_	5.4	- 0.2
Critical Hdwy Stg 2	_		_	_	5.4	_
Follow-up Hdwy	2.2	_	_	_	3.5	3.3
Pot Cap-1 Maneuver	1351	_	_	_	635	828
Stage 1	1331	_	-	<u>-</u>	824	020
Stage 1	-	-	-		881	
	-	-	-	-	001	-
Platoon blocked, %	1051	-	-	-	004	000
Mov Cap-1 Maneuver	1351	-	_	-	634	828
Mov Cap-2 Maneuver	-	-	-	-	634	-
Stage 1	-	-	-	-	822	-
Stage 2	-	-	-	-	881	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		10.5	
	U.Z		U		_	
HCM LOS					В	
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		1351	_	_	-	673
HCM Lane V/C Ratio		0.002	-	-	_	0.019
HCM Control Delay (s)		7.7	0	_		10.5
HCM Lane LOS		A	A	_	_	В
HCM 95th %tile Q(veh)		0	-	_	_	0.1
1.5m 55m 70m Q(10m)						J. 1

A&R Engineering, Inc. 24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA Synchro 11 Report Page 6

Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		^	† †	7
Traffic Vol, veh/h	0	112	0	1550	1554	144
Future Vol, veh/h	0	112	0	1550	1554	144
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	_	None	_	Free
Storage Length	_	0	_	-	_	250
Veh in Median Storage	, # 0	-	_	0	0	
Grade, %	0	_	-	0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	3	2	2
Mymt Flow	0	122	0	1685	1689	157
WWW.CT IOW		122		1000	1000	107
	-	_				
	Minor2		//ajor1		Major2	
Conflicting Flow All	-	845	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	306	0	-	-	0
Stage 1	0	-	0	-	-	0
Stage 2	0	-	0	-	-	0
Platoon blocked, %				_	_	
Mov Cap-1 Maneuver	-	306	-	_	-	-
Mov Cap-2 Maneuver	_	-	_	_	_	_
Stage 1	-	-	_	_	-	_
Stage 2	_	_	_	_	<u>-</u>	_
Jugo Z						
					SB	
Approach	EB		NB		SD	
Approach HCM Control Delay, s	EB 24.3		NB 0		0	
HCM Control Delay, s	24.3					
HCM Control Delay, s HCM LOS	24.3 C	NDT	0	ÇDT		
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	24.3 C	NBT E	0 EBLn1	SBT		
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	24.3 C	-	0 EBLn1 306	-		
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	24.3 C	-	0 EBLn1 306 0.398	-		
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	24.3 C	- - -	0 EBLn1 306 0.398 24.3	- - -		
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	24.3 C	-	0 EBLn1 306 0.398	-		

A&R Engineering, Inc. 24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA Synchro 11 Report Page 7

TRAFFIC	Volume	WORKSHEETS	

24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA Traffic Volumes

1. SR 74 @ Meadow Glen Pkwy

A&R Engineering May 2024

A.M. Peak Hour

		SR 74	SR 74 (Senoia Road	Road)			SR 74	SR 74 (Senoia Road)	Road)			Meadow	Meadow Glen Parkway	arkway			Meadow	Meadow Glen Parkway	arkway	
		Ż	Northbound	pu			Sc	Southbound	pu			ΞĬ	Eastbound	q			3	Westbound	q	
Condition	ם	Г	Τ	R	Tot	ח	J	Τ	ĸ	Tot	D	L	Τ	R	Tot	ח	J	Τ	R	Tot
Existing 2024 Traffic Counts:	ഹ	13	1148	09	1226	28	35	1250	26	1339	0	28	12	14	84	0	47	9	13	99
Growth Factor (%):	6	3	8	3		ю	3	3	3		6	6	3	3		6	6	3	ю	
No-Build 2026 Volumes:	5	14	1217	49	1300	30	37	1325	28	1420	0	61	13	15	68	0	20	9	14	20
Townhome Trips:	0	Н	0	0		0	0	0	Н	7	0	9	0	2	∞	0	0	0	0	0
Apartment and Retail-Restaurant Trips:	11	11	48	8	73	0	0	30	30	09	0	48	3	10	61	0	2	2	0	4
Total New Trips:	11	12	48	3	74	0	0	30	31	19	0	54	3	12	69	0	2	2	0	4
Pass-by Trips:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Future 2026 Traffic Volumes:	16	26	1265	29	1374	30	37	1355	29	1481	0	115	16	27	158	0	52	∞	14	74

		SR 74	SR 74 (Senoia Road	Road)			SR 74	SR 74 (Senoia Road)	Road)			Meado	Meadow Glen Parkway	arkway			Meadov	Meadow Glen Parkway	arkway	
		ž	Northbound	pu			Š	Southbound	pu			ш	Eastbound	μ			\$	Westbound	pu	
Condition	ח	L	Τ	R	Tot	ם	Г	Τ	R	Tot	ם	L	Τ	ĸ	Tot	ח	Г	Τ	ĸ	Tot
Existing 2024 Traffic Counts:	11	20	1257	29	1374	45	63	1422	83	1613	0	92	20	27	139	0	28	16	21	125
Growth Factor (%):	3	8	3	8		3	3	3	8		3	3	3	3		С	3	3	3	
No-Build 2026 Volumes:	12	53	1332	26	1456	48	29	1507	88	1710	0	86	21	59	148	0	61	17	54	132
Townhome Trips:	0	2	0	0	2	0	0	0	9	9	0	4	0	2	9	0	0	0	0	0
Apartment and Retail-Restaurant Trips:	22	22	4	3	16	0	0	62	62	124	0	4	3	10	22	0	4	4	0	œ
Total New Trips:	22	24	4	8	83	0	0	62	89	130	0	48	8	12	63	0	4	4	0	œ
Pass-by Trips:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Future 2026 Traffic Volumes:	34	13	1376	62	1549	48	29	1569	156	1840	0	146	24	41	211	0	65	21	54	140

24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA Traffic Volumes

2. SR 74 @ Landrum-Milam Rd

A&R Engineering May 2024

A.M. Peak Hour

Condition Vorthbound I T R Tot I T T A contribund Southbound Southbound Southbound Southbound I T I T I T I T I T	SR 74 (Senoia Road)		SR 74 (S	SR 74 (Senoia Road	oad)			Lanc	andrum Roac	ad			M	Milam Road	pe	
U L T R Tot U L L T R and L L L L L L L L L L L L L L L L L L L	Northbound		Sou	thbound	-			Ea	Eastbound	_			\$	Westbound	pı	
ant Trips: 1	R	U	Г	Τ	~	Tot	ח	L	T	R	Tot	ב	Г	Τ	R	Tot
1 45 1248 152 1446 12 138 1 13. Silvastaurant Trips: 0 0 13 0 13 51 7	, 143 1	11	130	1205	17	1363	0	27	40	23	06	0	172	39	80	291
Volumes: 1 45 1248 152 1446 12 138 1 5s: 0	3 3 3	3	6	3	3		6	3	8	8		ю	3	3	3	
Ps: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1248 152 1	12	138	1277	18	1445	0	59	42	24	95	0	182	41	82	308
Retail-Restaurant Trips: 0 0 13 0 13 51 7 3 s: 0 0 13 0 13 51 7	0 0 0 0 0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
s 0 0 13 0 13 51 7	0 0	51	^	21	^	98	0	4	0	0	4	0	0	0	4	4
· · · · · · · · · · · · · · · · · · ·	0 0 13 0 13	51	7	22	7	87	0	4	0	0	4	0	0	0	4	4
rass-by 1rtps:	0 0 0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Future 2026 Traffic Volumes: 1 45 1261 152 1459 63 145 1299	1261 152	63		1299	25	1532	0	33	42	24	66	0	182	41	68	312

		SR 74	SR 74 (Senoia Road	Road)			SR 74	SR 74 (Senoia Road	Road)			Lan	andrum Road	bad			M	Milam Roac	ad	
		Ż	Northbound	pu			Š	Southbound	pu			щ	Eastbound	q			×	Westbound	pu	
Condition	ם	Г	Τ	R	Tot	D	Г	Τ	R	Tot	ם	ר	Т	R	Tot	ב	J	Τ	R	Tot
Existing 2024 Traffic Counts:	23	34	1297	116	1470	42	188	1282	46	1558	0	49	79	59	157	0	212	53	26	324
Growth Factor (%):	3	3	8	3		6	8	3	3		3	6	3	3		3	6	8	ю	
No-Build 2026 Volumes:	24	36	1375	123	1558	45	199	1359	49	1652	0	52	84	31	167	0	225	26	63	344
Townhome Trips:	0	0	1	0		0	0	1	0	7	0	0	0	0	0	0	0	0	0	0
Apartment and Retail-Restaurant Trips:	0	0	27	0	27	48	9	19	9	79	0	6	0	0	6	0	0	0	6	6
Total New Trips:	0	0	28	0	78	48	9	20	9	80	0	6	0	0	6	0	0	0	6	6
Pass-by Trips:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Future 2026 Traffic Volumes:	24	36	1403	123	1586	93	205	1379	22	1732	0	61	8	31	176	0	225	26	72	353

24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA Traffic Volumes

3. Meadow Glen @ Apts-Site Drwy

A&R Engineering May 2024

A.M. Peak Hour

Condition Northbound Southbound Southbound Southbound Southbound Southbound Southbound Southbound Control <	Site Driveway C	Cambridge Faire Apartment Homes	aire Apa	urtment	Homes		Meadow	Meadow Glen Parkway	ırkway			Meador	Meadow Glen Parkway	arkway	
U L T R Tot U L 0 0 0 0 0 42 3 3 3 3 3 3 0 0 0 0 0 45 rant Trips: 0 0 0 0 0 0 0 0 0 62 62 0 0 0 0 0 0 0 62 62 0 0 0	Northbound	•	outhbor	pur			Щ	Eastbound	Ŧ			S	Westbound	p	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T R	Γ	Τ	ĸ	Tot	ח	Г	T	R	Tot	D	J	Τ	R	Tot
13 3 3 3 3 10 10 10 10 10 10 10 10 10 10 10 10 10	0 0 0 0 0	0 42	0	4	46	0	1	63	0	64	0	0	24	17	41
	3 3 3	3 3	3	6		ю	3	3	3		3	8	3	8	
0 0 0	0 0 0 0 0	0 45	0	4	49	0	1	29	0	89	0	0	25	18	43
0 0 0	0 0 0 0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 0 0 0 :so	0 0 0	0 0	0	0	0	0	0	0	0	0	0	43	0	0	43
	0 0 0 62 62	0 0	0	0	0	0	0	0	0	0	0	43	0	0	43
Pass-by Trips: $0 0 0 0 0 0 0 0 0$	0 0 0 0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
Future 2026 Traffic Volumes: 0 0 0 62 62 0 45 0	62	0 45	0	4	49	0	1	29	0	89	0	43	25	18	98

		Site	Site Driveway	vay		Camb	oridge Faire Apartment	rire Apa	rtment	Homes		Meado	Aeadow Glen Parkway	arkway			Meado	Meadow Glen Parkway	Parkway	1
		ž	Northboune	pu			š	Southbound	pun			_	Eastbound	pı			>	Westbound	pu	
Condition	U	Γ	Τ	R	Tot	U	Γ	Τ	R	Tot	D	T	Τ	R	Tot	U	Γ	Τ	R	Tot
Existing 2024 Traffic Counts:	0	0	0	0	0	0	21	0	3	24	0	rv	52	0	22	0	0	64	41	105
Growth Factor (%):	8	3	3	8		3	8	8	8		3	3	3	3		3	3	3	3	
No-Build 2026 Volumes:	0	0	0	0	0	0	22	0	8	25	0	rv	22	0	09	0	0	89	43	111
Townhome Trips:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apartment and Retail-Restaurant Trips:	0	0	0	22	22	0	0	0	0	0	0	0	0	0	0	0	68	0	0	68
Total New Trips:	0	0	0	22	22	0	0	0	0	0	0	0	0	0	0	0	68	0	0	68
Pass-by Trips:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Future 2026 Traffic Volumes:	0	0	0	22	22	0	22	0	3	22	0	Ŋ	22	0	09	0	68	89	43	200

24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA Traffic Volumes

A&R Engineering May 2024

4. Meadow Glen @ Townhomes Drwy

A.M. Peak Hour

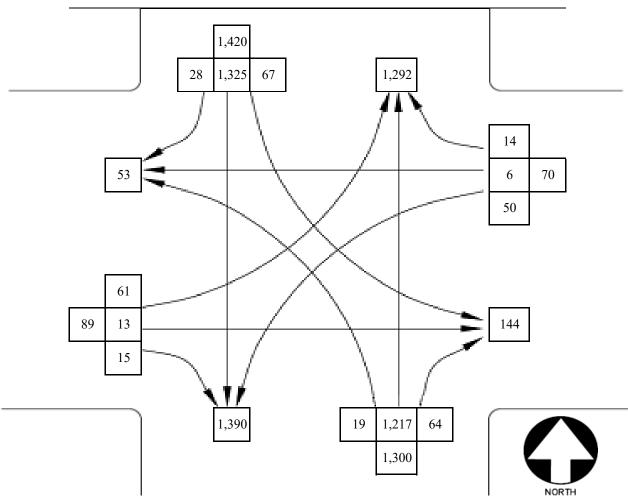
						IMC	I/əmohr	Tractor 5	Supply !	ownhome/Tractor Supply Site Drivewa	2Mi	M	Meadow Glen Parkway	Glen Pa	rkway			Meadow	Meadow Glen Parkway	arkway	
		ž	Northbound	pu				Southbound	ponuq				Eas	Eastbound				≥	Westbound	þ	
Condition	D	J	Τ	R	Tot		נו	L T		R Tot	t l	ח	Г	T	R	Tot	ח	J	Τ	R	Tot
Existing 2024 Traffic Counts:	0	0	0	0	0	-	0 2	2 (.7	4		0	2	105	0	107	0	0	41	2	43
Growth Factor (%):	3	3	6	8		.,,	3	٠.	(1)			3	8	3	8		С	3	3	8	
No-Build 2026 Volumes:	0	0	0	0	0) 2	· ·	.,	4		0	2	111	0	113	0	0	43	2	45
Townhome Trips:	0	0	0	0	0	_	8 0	· C	0	8		0	0	0	0	0	0	0	0	2	2
Apartment and Retail-Restaurant Trips:	0	0	0	0	0	_	0) (0	0		0	0	62	0	62	0	0	43	0	43
Total New Trips:	0	0	0	0	0	_	3 0	9		8 (0	0	62	0	62	0	0	43	2	45
Pass-by Trips:	0	0	0	0	0	_	0) (0	0		0	0	0	0	0	0	0	0	0	0
Future 2026 Traffic Volumes:	0	0	0	0	0)) 1() 0	.,	. 12		0	2	173	0	175	0	0	98	4	06

						/əmoquwc		tor Sup	ractor Supply Site L	Drivewa		Meado	Meadow Glen Parkway	arkway			Meado	Meadow Glen Parkway	arkway	
		ž	Northbound	pu			Š	Southbound	pun			_	Eastbound	þ			_	Westbound	pu	
Condition	D	J	T	ĸ	Tot	ב	Г	Τ	R	Tot	ב	Г	Τ	R	Tot	ם	Г	Τ	×	Tot
Existing 2024 Traffic Counts:	0	0	0	0	0	0	3	0	3	9	0	0	73	3	9/	0	0	105	8	108
Growth Factor (%):	8	3	ю	3		8	8	8	3		6	8	3	8		6	3	8	8	
No-Build 2026 Volumes:	0	0	0	0	0	0	3	0	3	9	0	0	13	3	08	0	0	111	8	114
Townhome Trips:	0	0	0	0	0	0	9	0	0	9	0	0	0	0	0	0	0	0	œ	œ
Apartment and Retail-Restaurant Trips:	0	0	0	0	0	0	0	0	0	0	0	0	57	0	22	0	0	68	0	68
Total New Trips:	0	0	0	0	0	0	9	0	0	9	0	0	22	0	22	0	0	86	œ	26
Pass-by Trips:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Future 2026 Traffic Volumes:	0	0	0	0	0	0	6	0	3	12	0	0	134	8	137	0	0	200	11	211

A&R Engineering May 2024

24-095 - 8055 Senoia Road Mixed-Use Development - Fairburn, GA Traffic Volumes

5. SR 74 @ RIRO Drwy

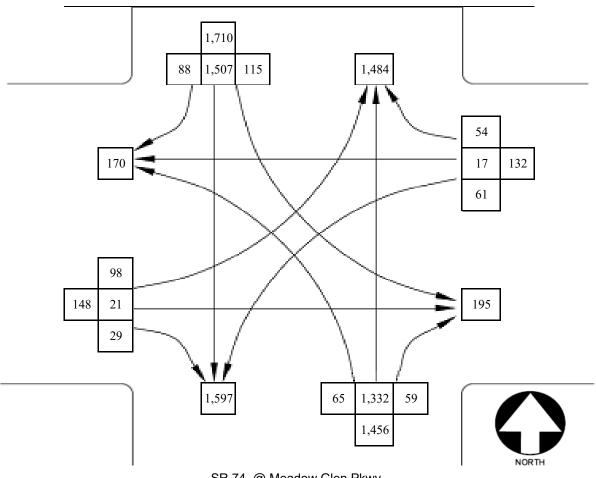

A.M. Peak Hour

		SR 74	SR 74 (Senoia Road	Road)			SR 74	SR 74 (Senoia Roac	Road)		Right	-In/Rig	tt-Out S	ite Drive	riveway					
		ž	Northbound	þı			So	Southbound	ρι			щ	Eastbound	þ			3	Westbound	q	
Condition	ם	Г	Τ	R	Tot	ם	Г	Τ	ĸ	Tot	ם	J	Τ	R	Tot	ח	J	Τ	R	Tot
Existing 2024 Traffic Counts:	0	0	1226	0	1226	0	0	1311	0	1311	0	0	0	0	0	0	0	0	0	0
Growth Factor (%):	8	3	3	3		ю	6	6	3		ю	6	3	3		ю	3	3	3	
No-Build 2026 Volumes:	0	0	1300	0	1300	0	0	1390	0	1390	0	0	0	0	0	0	0	0	0	0
Townhome Trips:	0	0	1	0		0	0	2	0	2	0	0	0	0	0	0	0	0	0	0
Apartment and Retail-Restaurant Trips:	0	0	73	0	73	0	0	10	43	23	0	0	0	75	75	0	0	0	0	0
Total New Trips:	0	0	74	0	74	0	0	12	43	55	0	0	0	75	75	0	0	0	0	0
Pass-by Trips:	0	0	0	0	0	0	0	-48	84	0	0	0	0	47	47	0	0	0	0	0
Future 2026 Traffic Volumes:	0	0	1374	0	1374	0	0	1354	91	1445	0	0	0	122	122	0	0	0	0	0

		SR 74	SR 74 (Senoia Road	Road)			SR 74	SR 74 (Senoia Road	Road)		Right	-In/Rigl	Right-Out Site Γ	ite Drive	Oriveway					
		ž	Northbound	ъ			š	Southbound	pu			шĭ	Eastbound	q			×	Westbound	p	
Condition	ח	L	Τ	R	Tot	ם	Г	T	R	Tot	ם	Г	Τ	R	Tot	n	Г	Τ	R	Tot
Existing 2024 Traffic Counts:	0	0	1374	0	1374	0	0	1507	0	1507	0	0	0	0	0	0	0	0	0	0
Growth Factor (%):	6	3	3	3		ю	3	3	6		3	3	8	ю		3	8	3	3	
No-Build 2026 Volumes:	0	0	1456	0	1456	0	0	1597	0	1597	0	0	0	0	0	0	0	0	0	0
Townhome Trips:	0	0	2	0	2	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0
Apartment and Retail-Restaurant Trips:	0	0	92	0	92	0	0	10	68	66	0	0	0	20	70	0	0	0	0	0
Total New Trips:	0	0	94	0	94	0	0	12	68	101	0	0	0	20	70	0	0	0	0	0
Pass-by Trips:	0	0	0	0	0	0	0	-55	22	0	0	0	0	42	42	0	0	0	0	0
Future 2026 Traffic Volumes:	0	0	1550	0	1550	0	0	1554	144	1698	0	0	0	112	112	0	0	0	0	0

LEFT-TURN PHASE ANALYSIS

Future 2026 (No-Build) Traffic Count Summary Sheet Peak Hour Count (AM)

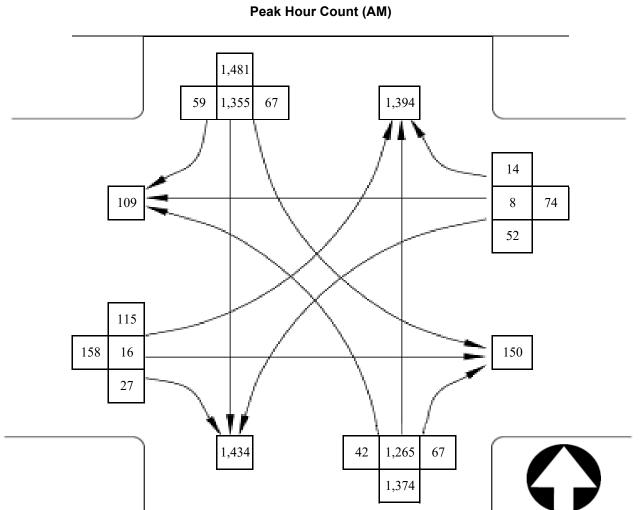


SR 74 @ Meadow Glen Pkwy

Conflicting Movements	Through Volume (V _o)	Left Turn Volume (V _{It})	Opposing Lanes (N _o)	Cross-Product $(V_o \times V_{lt} \div N_o)$	Cross-Product Warrant?	Peak Volume Warrant?	Turn Phase Recommended?
NBL & SBT	1,325	19	2	12,588	NO	NO	NO
SBL & NBT	1,217	67	2	40,770	Lagging Phase	NO	YES, Lagging
EBL & WBT	6	61	1	366	NO	NO	NO
WBL & EBT	13	50	1	650	NO	NO	NO

LEFT TURN CRITERIA - AM PEAK HOUR

Future 2026 (No-Build) Traffic Count Summary Sheet Peak Hour Count (PM)

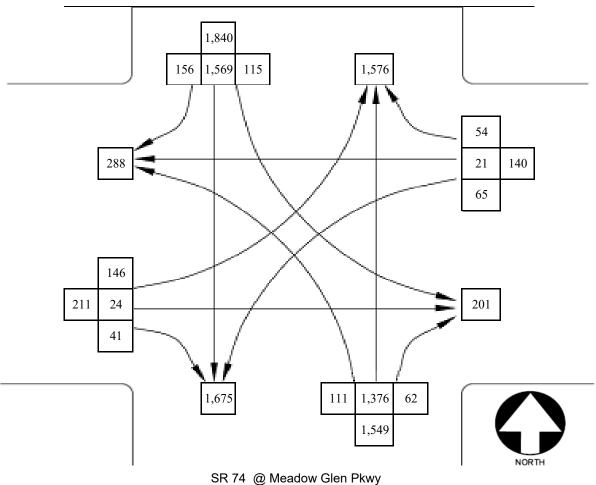

SR 74 @ Meadow Glen Pkwy

Conflicting Movements	Through Volume (V _o)	Left Turn Volume (V _{it})	Opposing Lanes (N _o)	Cross-Product $(V_o \times V_{lt} \div N_o)$	Cross-Product Warrant?	Peak Volume Warrant?	Turn Phase Recommended?
NBL & SBT	1,507	65	2	48,978	Lagging Phase	NO	YES, Lagging
SBL & NBT	1,332	115	2	76,590	YES	Lagging Phase	YES, Leading
EBL & WBT	17	98	1	1,666	NO	Lagging Phase	YES, Lagging
WBL & EBT	21	61	1	1,281	NO	NO	NO

LEFT TURN CRITERIA - PM PEAK HOUR

A&R Engineering Inc.

Future 2026 (Build) Traffic Count Summary Sheet



SR 74 @ Meadow Glen Pkwy

Conflicting Movements	Through Volume (V _o)	Left Turn Volume (V _{It})	Opposing Lanes (N _o)	Cross-Product $(V_o \times V_{lt} \div N_o)$	Cross-Product Warrant?	Peak Volume Warrant?	Turn Phase Recommended?
NBL & SBT	1,355	42	2	28,455	NO	NO	NO
SBL & NBT	1,265	67	2	42,378	Lagging Phase	NO	YES, Lagging
EBL & WBT	8	115	1	920	NO	Lagging Phase	YES, Lagging
WBL & EBT	16	52	1	832	NO	NO	NO

LEFT TURN CRITERIA - AM PEAK HOUR

Future 2026 (Build) Traffic Count Summary Sheet Peak Hour Count (PM)

Conflicting Movements	Through Volume (V _o)	Left Turn Volume (V _{it})	Opposing Lanes (N _o)	Cross-Product $(V_o \times V_{lt} \div N_o)$	Cross-Product Warrant?	Peak Volume Warrant?	Turn Phase Recommended?
NBL & SBT	1,569	111	2	87,080	YES	Lagging Phase	YES, Leading
SBL & NBT	1,376	115	2	79,120	YES	Lagging Phase	YES, Leading
EBL & WBT	21	146	1	3,066	NO	YES	YES, Leading
WBL & EBT	24	65	1	1,560	NO	NO	NO

LEFT TURN CRITERIA - PM PEAK HOUR

A&R Engineering Inc.

AccidentNo AccidentNur Date	cidentNum	Date Time County	Route	IntersectingRoute	MannerOfCollision	niuries Fat	Injuries Fatalities U1Factors
7055818	7055818	3/2019 6:24:00	HWY 74	MEADOW GLEN PKWY		0	0 Failed to Yield; No Contributing Factors
7075515	7075515	2/7/2019 7:14:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Angle	0	0 Failed to Yield
7082232	7082232	2/12/2019 16:04:00 FULTON	HWY 74	MEADOW GLEN PKWY	Rear End	0	0 Following too Close
7083639	7083639	2/12/2019 15:00:00 FULTON	HWY74	MEADOW GLEN PKWY	Angle	0	0 Failed to Yield
7199764	7199764	5/9/2019 9:25:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Rear End	0	0 Following too Close
7204357	7204357	5/9/2019 19:44:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Angle	0	
7250468	7250468	6/12/2019 12:07:00 FULTON	SENOIA RD	MEADOW GLEN PKWY		0	
7272091	7272091	7/3/2019 18:06:00 FULION	HWY 74	MEADOW GLEN PKWY	Sideswipe-Opposite Direction Rear End	0	0 Fallowing too Close
7359856	7359856	9/17/2019 10:57:00 FULTON	HWY 74	MEADOW GLEN PKWY	Rear End	2	
7360880	7360880	9/19/2019 14:02:00 FULTON	HWY 74	MEADOW GLEN PKWY	Sideswipe-Opposite Direction	0	0 Failed to Yield
7383863	7383863	10/8/2019 8:32:00 FULTON	HWY74	MEADOW GLEN PKWY	Rear End	0	0 Following too Close
7399894	7399894	7399894 10/17/2019 14:27:00 FULTON	HWY74	MEADOW GLEN PKWY	Angle	0	0 Failed to Yield
7443242	7443242	11/20/2019 11:45:00 FULTON	HWY 74	MEADOW GLEN PKWY	Rear End	0	0 Following too Close
7448481	7448481	11/21/2019 12:08:00 FULTON	HWY 74	MEADOW GLEN PKWY	Rear End	1	0 Changed Lanes Improperly
7460115	7460115	12/2/2019 5:45:00 FULTON	HWY 74	MEADOW GLEN PKWY	Angle	0	0 Failed to Yield
7481413	7481413	12/17/2019 7:55:00 FULTON	HWY 74	MEADOW GLEN PKWY	Rear End	0	0 Following too Close
7536322	7536322	1/20/2020 13:12:00 FULTON	HWY 74	MEADOW GLEN PKWY	Rear End	1	0 Following too Close
7557530	7557530	2/19/2020 16:09:00 FULTON	HWY 74	MEADOW GLEN PKWY	Sideswipe-Same Direction	0	0 Failed to Yield
7660129	7660129	6/9/2020 13:26:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Sideswipe-Same Direction	0	0 Other - Details in Narrative
7674906	7674906	6/24/2020 12:42:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Rear End	0	0 Following too Close
7682196	7682196	6/30/2020 15:45:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Rear End	0	0
7694281	7694281	7/12/2020 18:19:00 FULTON	SENOIA RD	MEADOW GLEN PKWY		0	
7719607	7719607	8/4/2020 17:16:00 FULTON	MEADOW GLEN CIR	HWY 74	Not A Collision with Motor Vehic	0	0 Other - Details in Narrative; No Contributing Factors
7744407	7744407	7/20/2020 15:30:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Rear End	0	0 Other - Details in Narrative
7764573	7764573	9/4/2020 16:45:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Rear End	0	
7834457	7834457	11/2/2020 16:00:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Rear End	0	0 Improper Backing
7851148		11/13/2020 17:25:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Rear End	0	0 Following too Close
7871172	7871172	12/1/2020 16:49:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Rear End	1	0 Following too Close
7919066	7919066	1/11/2021 17:00:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Rear End	0	0 Following too Close
7921945	7921945	1/14/2021 12:54:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Sideswipe-Same Direction	1	0 Disregard Stop Sign/Signal
7926451	7926451	1/19/2021 13:22:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Rear End	0	
7935887	7935887	1/28/2021 14:40:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Rear End	1	
7938260	7938260	1/30/2021 19:33:00 FULTON	MEADOW GLEN PKWY	SENOIARD	Rear End	0	
7949479	7949479	2/9/2021 20:36:00 FULTON	HWY 74	MEADOW GLEN PKWY	Sideswipe-Same Direction	0	
8007851	8007851	3/28/2021 18:09:00 FULTON	MEADOW GLEN PKWY	SENOIARD	Rear End	H	
8076818	8076818	5/10/2021 11:30:00 FULTON	HWY 74	MEADOW GLEN PKWY	Sideswipe-Same Direction	0	
8080924	8080924		HWY 74	MEADOW GLEN PKWY	Rear End	0	
8107367	8107367	6/21/2021 4:30:00 FULTON	HWY 74	MEADOW GLEN PKWY	Not A Collision with Motor Vehic	0	
8122438	8122438	6/30/2021 13:10:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Rear End	0	
8183292	8183292	8/12/2021 16:05:00 FULTON	HWY 74	MEADOW GLEN PKWY	Rear End	2	
8185168	8185168	8/20/2021 15:30:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Rear End	0	
8192641	8192641	\neg	SENOIA RD	MEADOW GLEN PKWY	Rear End	0	0 No Contributing Factors
8244086			SENOIA RD	MEADOW GLEN PKWY	Angle	0	0 Failed to Yield
8265501		10/14/2021 7:54:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Rear End	0	
8268316	8268316	10/15/2021 17:33:00 FULTON	HWY 74	MEADOW GLEN PKWY	Rear End	0	0 Following too Close;Inattentive or Other Distracti
9131342		8/8/2023 8:05:00 FULTON	EADOW GL	E SENOIA RD	Rear End	0	0
9204317	9204317	10/29/2023 13:01:00 FULTON	SENOIA RD	MEADOW GLEN PKWY	Rear End	. .	0 Following too Close
9266988	9266988	9266988 12/14/2023 14:15:00 FULTON	MEADOW GLEN PKWYS SENOIA RD	rs senoia RD	Rear End	0	0

GEORGIA LAW REQUIRED APPEAL RIGHTS RESERVATION

Troutman Pepper Hamilton Sanders LLP 600 Peachtree Street NE, Suite 3000 Atlanta, GA 30308-2216

troutman.com

Jessica L. Hill
D 404.885.3925
jessica.hill@troutman.com

August 13, 2024

VIA EMAIL

City of Fairburn Department of Planning and Zoning Attn: Ms. Denise Brookins, Planning and Zoning Director

RE: Rezoning and Concurrent Variance Application for Meadow Glen Project on Fulton County Tax Parcel #09F020100121014 (a portion of) and Tax Parcel #09F070000271062 (collectively, the "Application")

Dear Denise:

Please add this letter to the file of the Application to preserve the rights of Portman Holdings, LLC (the "Applicant") in connection with the Application.

Denial of the Application or approval of the Application with conditions unacceptable to the Applicant would be unconstitutional in that it would unreasonably impair and destroy the Applicant's property rights without first paying fair, adequate and just compensation for such rights, in violation of Article I, Section I, Paragraph I of the Constitution of the State of Georgia of 1983, Article I, Section III, Paragraph I of the Constitution of the State of Georgia of 1983, and the Due Process Clause of the Fourteenth Amendment to the Constitution of the United States.

Denial of the Application or approval of the Application with conditions unacceptable to the Applicant would also be unconstitutional, illegal, null and void, constituting a taking of Applicant's property in violation of the Just Compensation Clause of the Fifth Amendment to the Constitution of the United States, Article I, Section I, Paragraph I, and Article I, Section III, Paragraph I of the Constitution of the State of Georgia of 1983, and the Equal Protection and Due Process Clauses of the Fourteenth Amendment to the Constitution of the United States, by denying the Applicant an economically viable use of its land while not substantially advancing legitimate state interests.

Denial of the Application or approval of the Application with conditions unacceptable to the Applicant would constitute an unreasonable and extreme hardship upon the Applicant, without remotely advancing the public health, safety and welfare and would constitute an arbitrary and capricious act by the City of Fairburn Mayor and City Council without any rational basis therefore, constituting an abuse of discretion in violation of Article I, Section I, Paragraph I of the Constitution of the State of Georgia of 1983, Article I, Section III, Paragraph I of the Constitution of the State of Georgia of 1983, and the Due Process Clause of the Fourteenth Amendment to the Constitution of the United States.

Denial of the Application or approval of the Application with conditions unacceptable to the Applicant by the City of Fairburn Mayor and City Council would also violate the Applicant's rights under the First Amendment to the Constitution of the United States and would unconstitutionally discriminate, in an arbitrary, capricious and unreasonable manner, between the Applicant and owners of other similarly situated properties in the City of Fairburn in violation of Article I, Section I, Paragraph II of the Constitution of the State of Georgia of 1983 and the Equal Protection Clause of the Fourteenth Amendment to the Constitution of the United States.

Sincerely yours,

Jessica L. Hill

minh Hould

301001651v1

CITY OF FAIRBURN

PLANNING AND ZONING COMMISSION

AGENDA ITEM

To: Planning and Zoning Commission

From: Denise Brookins, Planning and Zoning Director

Date: September 3, 2024

Agenda Item: Comprehensive Plan – (Chapter 80, Zoning, Article VIII. - Amendments To Zoning Code

and Map, Section 80-301 – Request to review the text amendments

Purposes

For the Planning and Zoning Commission to make a recommendation to the Mayor and Council on amendments to Chapter 80 (Zoning), Article VIII (Zoning Districts), Sec 80-301

Background

Georgia's Department of Community Affairs requires that communities undertake a Comprehensive Plan update every 5 years to maintain Qualified Local Government (QLG) status. Each Georgia municipality that utilizes zoning or similar land development regulations within the scope of the state's Zoning Procedures Law is required to include a Land Use element within its Plan. At the core of this element is the intent to demonstrate how the locally adopted land use tools will be used to shape and improve the nature of land development within the jurisdiction to meet the social, economic, and ecological needs of its residents. The current Comprehensive Plan was adopted in 2021, and the required update must be completed by October of 2025.

The enclosed draft is a recommendation to establish a process and review standards for future land use map updates. All parcels in the city have both a zoning and future land use designation. The zoning districts define permitted uses and contain the design and development guidelines for those intended uses. The land use designation in the comprehensive plan provides guidance on the "future use" of each property and establishes the perimeters for density or intensity for a particular area. The Comprehensive Plan may encourage (but not guarantee) various zoning districts within a given future land use designation.

If the City Council, Planning and Zoning Commission, or a property owner desires to encourage development that does not conform to the current future land use designation, the proposed text amendment provides a process to request a future land use amendment, which may accommodate a rezoning application.

Staff Recommendations

Staff recommends that the Planning and Zoning Commission APPROVE the proposed text amendment.

Summary of the Text Changes:

Secs. 80-301 COMPREHENSIVE LAND USE PLAN AMENDMENTS

The Comprehensive Land Use Plan (CLUP) may be amended from time to time for specific properties on the CLUP Future Land Use Map by the City Council under the procedures hereinafter specified. Such changes are referred to as "CLUP amendments" in the Ordinance.

Initiation.

- A. A proposed change in the land use designation on the Future Land Use Map may be initiated by the City Council, the Planning Commission, or by any person who owns property within the City. Unless initiated by the City Council or the Planning Commission, all such applications shall be initiated by the owner of a majority interest in the property affected.
- B. Any other proposal to change or amend the Comprehensive Land Use Plan shall only by initiated by the City Council or the Planning Commission, and shall be considered under the requirements of the *Minimum Standards and Procedures for Local Comprehensive Planning* as adopted by the Georgia Board of Community Affairs, in lieu of the procedures herein.
- C. A CLUP amendment initiated by a property owner shall be submitted to the Director within filing deadlines and on application forms prepared by the Community Development Department. The application forms and filing deadlines shall be published and made available to the public. All applications not filed by the City shall be accompanied by a non-refundable fee as fixed from time to time by the Community Development Department.
- D. An application for a CLUP amendment affecting the same property shall not be considered by the City Council more often than once every 12 months; provided, however, that the City Council may approve a reduction in the waiting period.

Public hearing process.

Before taking final action on a proposed CLUP amendment, the Mayor and City Council each shall hold a public hearing on the proposal. The Director shall publish the schedule of the public hearing dates on an annual basis, along with application filing deadlines.

- A. Public Notice.
 - 1. Notification to the General Public.
 - a. At least (15) days but not more than forty-five (45) days prior to each public hearing, notice shall be published in a newspaper of general circulation within the City. The Director shall prepare such notice, which shall state the time, place and purpose of the hearing.
 - b. If a CLUP amendment is to be heard at the public hearing then:
 - (1) The notice in addition to the requirements above, shall include the location of the property, the present land use designation of the property and the proposed land use designation of the property; and
 - (2) The Director shall post, at least fifteen (15) days prior to the public hearing, on a conspicuous place on the property for which an application has been submitted, a sign or signs stating the date, time and place for the public hearing, and the public hearing case number.

- 2. *Notice to Surrounding Property Owners:* If the proposed CLUP amendment affects only one (1) property, notice shall also be given to the surrounding property owners as follows:
 - a. At least fifteen (15) days prior to the first public hearing at which the amendment will be considered, the Director shall cause a notice to be mailed to the:
 - (1) All persons owning record title to the property located within 1000 feet of the property that is the subject matter of amendment.
 - b. The notice shall state the time, place and purpose of the hearings by the Mayor and City Council. The written notice shall be mailed to the last known address of the property owners as such addresses appear on the Fulton County ad valorem tax records.
- 3. *Neighborhood Meeting:* At least one neighborhood meeting must be held to discuss the request At least fifteen days before the public hearing. The neighborhood meeting must comply with standards and procedures outlined in section 80-474 and section 80-475.
- 4. Associated Applications for Zoning or Use. If an application for a CLUP amendment is associated with a proposal to rezone property or to obtain approval of a use, the public notice for the CLUP amendment and the zoning change and conditional use may be combined.
- B. City Council.
 - 1. The Director or his or her designee shall present each proposed CLUP amendment to the City Council, together with the staff recommendation.
 - 2. Following the public hearing, action may be taken by the City Council by majority of those voting approving or rejecting the proposal, or allowing withdrawal if so requested by the applicant (with or without prejudice), or the City Council may table the proposal for consideration at its next regular meeting.

Standards for CLUP amendment approval.

The Mayor and City Council shall consider the following in evaluating a CLUP amendment, giving due weight or priority to those factors particularly appropriate to the circumstances of the application:

- The extent to which a change in the economy, land use or development opportunities of the area has occurred.
- 2. The extent to which additional land area is needed to be developed for a specific type of use.
- 3. The extent to which the proposed designation is in compliance with the concerns, goals and policies of the Comprehensive Plan.
- 4. The extent to which the proposed designation would impact public health, safety or welfare.
- 5. The extent to which additional land area needs to be made available or developed for a specific type of use.
- 6. Whether the proposed land use change will adversely affect the existing use or usability of adjacent or nearby properties
- Whether the proposed land use change will result in uses which will or could cause excessive or burdensome uses of existing streets, transportation facilities, utilities, public services or schools, or any infrastructure.

8.	Describe how the resultant changes impact or benefit the City of Fairburn relative to all of the items listed below:
	Community Design;

	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
_	Cultural Resources;
_	Economic Development;
_	Environment;
_	Fire and Rescue; Housing (residential developments only);
_	Land Use;
_	Libraries (residential developments only);
_	Open Space;
_	Parks;
_	Police;

- Schools (residential developments only);
- Sewer;
- Transportation;

Potable Water;

Sector Plan/Small Area Plan (if applicable);

Withdrawal and deferral.

- A. Any applicant wishing to withdraw a proposed CLUP amendment shall file a written request for withdrawal with the Director.
 - 1. If the request for withdrawal is received prior to the publication of notice for the public hearing, the CLUP amendment shall be withdrawn administratively by the Director without prejudice or restriction on the refiling of a proposed CLUP amendment on the property.
 - 2. Should any request for withdrawal be made by the applicant at the City Council's public hearing, the CLUP amendment shall remain on the public hearing agenda and the withdrawal request shall be considered for approval or denial, with or without prejudice, by the City Council.
- B. Any applicant wishing to defer a proposed CLUP amendment shall file a written request for a deferral with the Director.
 - A written request may be received by the Director up to three times for any CLUP application. The first two deferral requests may be granted by the Director. A third deferral request requires City Council approval.
 - 2. Each written request for deferral shall be accompanied by a \$500.00 re-advertising fee established by the Director.

State of Georgia oversight.

- A. Applications. A proposed CLUP amendment shall be submitted by the applicant to the Atlanta Regional Commission as a Comprehensive Plan Amendment prior to submission of the application to the City if the proposed CLUP Amendment qualifies as a Development of Regional Impact as described under section 4.2 Rezoning and Conditional Uses.
- B. Major Amendments. If the Mayor and City Council, at their public hearing, determines that the CLUP amendment is a "major amendment" under the State guidelines in that it is justified only because the conditions or policies underlying the Comprehensive Land Use Plan have changed significantly so as to alter the basic tenets of the Plan, then no action shall be taken on the amendment until the review process mandated by the State's Minimum standards and Procedures for local Comprehensive Planning shall have been completed.

Effect.

Approval of a CLUP amendment shall be in full force and effect upon its approval or upon the stated effective date thereof.

CITY OF FAIRBURN

PLANNING AND ZONING COMMISSION

AGENDA ITEM

To: Planning and Zoning Commission

From: Chancellor Felton, Planner

Date: September 3, 2024

Agenda Item: Relocation of Legally Nonconforming Signs – Request to review the text amendments.

Purposes

For the Planning and Zoning Commission to make a recommendation to the Mayor and Council on amendments to Chapter 80 (Zoning), Article XII (Sign Regulations), Section 435 (Grandfathered and nonconforming signs).

Background

The Georgia Department of Transportation (GDOT) will be widening the right-of-way of Senoia Road (Highway 74) with construction slated to start in the next year. GDOT has condemned and acquired the land to do such. Several businesses and their signage has been affected by this legal taking. The signage of the affected businesses has to be relocated. However, due to our current regulations, legally nonconforming signs cannot be relocated or changed for any reason besides to come into compliance with the current regulations.

Discussion

It is our duty to mitigate any unnecessary hardships that property owners and/or applicants may have due to circumstances that are out of their control. Therefore, it is Staff's recommendation to allow for the relocation of legally nonconforming signs affected by condemnations or acquisitions by lawful authorities with specific conditions for doing so.

Staff Recommendation

Staff recommends that the Planning and Zoning Commission recommend **APPROVAL** to the Mayor and City Council for amendments to Chapter 80 (Zoning), Article XII (Sign Regulations), Section 435 (Grandfathered and nonconforming signs).

Summary of the Text Changes:

• (12) If the city or any other lawfully constituted state or federal governmental authority, agency or body or utility having the authority of eminent domain condemns or acquires property in the city, and, as the sole result of such condemnation or acquisition, an existing nonconforming sign that was legally erected must be removed, the existing nonconforming sign that was legally erected may be relocated on the same lot on which the original nonconforming sign that was legally erected was

located. In the relocation of a legally erected nonconforming sign as the result of an act of eminent domain, any nonconformities with respect to height, shape, or signage area may not be increased or changed beyond those that exist as of the date of taking unless the changes will bring the sign into compliance. However, the relocated sign may be relocated closer to the right-of-way than otherwise allowed by current setback requirements provided it will not impact line of sight or otherwise constitute a safety concern.